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Detection of DRFs is most often not an issue, but non-
displaced fractures or more subtle fracture lines, such as a 
radial styloid fracture, can be missed [1]. It has been noted 
that four out of five diagnostic errors made in the emer-
gency department are missed fractures, and about 13–17% 
of missed fractures are located in the wrist [2, 3]. AI could 
be of great help here in aiding physicians.

DRF classification should (1) enable a standardized 
method to describe fractures and give guidance in the proper 
treatment per classification, (2) provide a consistent method 
of recording in the electronic patient system for evaluation 
of the patient in research, and (3) help compare studies using 

Introduction

The use of Artificial Intelligence (AI) to perfectly detect 
and classify fractures on radiographic images and to predict 
the best treatment option is considered a holy grail. This is 
also true for distal radius fractures (DRFs), where surgery 
aims to prevent losing threshold alignment (also known as 
a fracture being ‘unstable’) after closed reduction. The ter-
minology might be confusing, as “fracture instability” and 
“fracture redisplacement” are often used interchangeably 
with “loss of threshold fracture alignment”; they are, how-
ever, insufficient and should be avoided where possible.
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Abstract
Purpose  Early and accurate assessment of distal radius fractures (DRFs) is crucial for optimal prognosis. Identifying frac-
tures likely to lose threshold alignment (instability) in a cast is vital for treatment decisions, yet prediction tools’ accuracy 
and reliability remain challenging. Artificial intelligence (AI), particularly Convolutional Neural Networks (CNNs), can 
evaluate radiographic images with high performance. This systematic review aims to summarize studies utilizing CNNs to 
detect, classify, or predict loss of threshold alignment of DRFs.
Methods  A literature search was performed according to the PRISMA. Studies were eligible when the use of AI for the 
detection, classification, or prediction of loss of threshold alignment was analyzed. Quality assessment was done with a 
modified version of the methodologic index for non-randomized studies (MINORS).
Results  Of the 576 identified studies, 15 were included. On fracture detection, studies reported sensitivity and specificity 
ranging from 80 to 99% and 73–100%, respectively; the AUC ranged from 0.87 to 0.99; the accuracy varied from 82 to 
99%. The accuracy of fracture classification ranged from 60 to 81% and the AUC from 0.59 to 0.84. No studies focused on 
predicting loss of thresholds alignement of DRFs.
Conclusion  AI models for DRF detection show promising performance, indicating the potential of algorithms to assist 
clinicians in the assessment of radiographs. In addition, AI models showed similar performance compared to clinicians. No 
algorithms for predicting the loss of threshold alignment were identified in our literature search despite the clinical relevance 
of such algorithms.
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the same classifications and therefore optimize the treatment 
protocols. Considering this, a reliable fracture classification 
system can provide insight into clinical decision-making 
[4]. Therefore, a fracture classification tool without inherent 
surgeon bias is of interest.

When a DRF is displaced, closed reduction and cast 
immobilization are traditionally chosen [5]. However, sec-
ondary displacement occurs in up to 64% of the patients 
[6]. Identifying fractures likely to lose threshold alignment 
could greatly help clinical decision-making between nonop-
erative and surgical treatment. However, the accuracy and 
reliability of current fracture loss of threshold alignment 
prediction tools still need to be improved [7–10].

AI can execute tasks that humans previously performed. 
Specifically, Convolutional Neural Networks (CNN), which 
can evaluate visual input, have been of interest [11]. While 
earlier AI methods have led to applications with subhu-
man performance, recent CNNs can match and even sur-
pass the capacity of humans to detect certain fractures on 
radiographs, focusing on isolated fracture types per model 
[12–16]. The strength of computers and algorithms is their 
ability to perform many calculations rapidly, consistently 
and without exhaustion. CNNs can be used to implement 
automated fracture detection, classification, and prediction 
algorithms to guide clinicians in clinical and emergency set-
tings. There has been less focus on using CNNs as a pre-
diction tool, even though this might be the most valuable 
attribution for treatment decisions. Given the above-men-
tioned challenges within the care for DRFs and the promis-
ing development of AI, we conducted a systematic review to 
give an overview of studies using CNNs with radiographs to 
detect, classify, and/or predict loss of threshold alignment of 
DRFs. This study aimed to answer two questions: (1) What 
is the accuracy of current CNNs in detecting and classify-
ing DRFs and predicting their loss of threshold alignment 
on radiographs? (2) Does the use of CNNs outperform the 
diagnostic performance of clinicians?

Methods

Article selection, quality assessment, and data 
extraction

The systematic literature search was performed according to 
the PRISMA statement [17] and conducted in Medline ALL, 
Embase, Web of Science Core Collection, Cochrane Central 
Register of Controlled Trials and Google Scholar (100 top-
ranked) in January 2024. The search strategy can be found 
in Appendix 1. This review was not registered online.

After removing duplicities, two authors (LHMD and 
KDON) independently screened the title and abstract for 

potential inclusion. Subsequently, a full-text review was 
done on the remaining articles with the defined inclu-
sion and exclusion criteria. Articles were included if they 
described the use of CNNs to detect or classify DRFs or to 
predict loss of threshold alignment of DRFs on plain radio-
graphs. Papers describing studies in children, reviews, let-
ters, conference abstracts, surgical techniques, studies using 
robots, animal and cadaveric studies, non-orthopaedic frac-
tures, and studies not published in English or Dutch were 
excluded. The inconclusive inclusion of articles was dis-
cussed afterward by the two reviewers. Covidence (Veritas 
Health Innovation, Melbourne, Australia) was used for the 
screening process and full-text review.

To assess the quality of the included articles, two review-
ers (KDON, JW) independently used a modified version 
of the methodologic index for non-randomized studies 
(MINORS). A third reviewer was consulted if the scoring 
was inconsistent (LHMD). Studies with low scores on three 
or more items were excluded. Standardized forms were used 
to extract and record data (Microsoft Excel Version 16.21; 
Microsoft Inc, Redmond, WA, USA).

Outcome measures

The primary outcome was the performance of the AI model 
used, given in sensitivity, specificity, accuracy, Area Under 
the Receiver Operator Characteristics Curve (AUC), F-1 
score, and average precision when present. The second-
ary outcome was comparing the AI models’ performance 
to clinicians’ performance. The highest possible F1-score 
is 1.0, indicating perfect precision and recall, and the low-
est possible value is 0. The AUC is a score to measure the 
ability of a classifier to distinguish between classes. Scores 
lie between 0.5 (classifier equal to chance) and 1 (a perfect 
classifier), scores < 0.5 are not reported as they predict the 
wrong result. Average precision 50 (AP50) is a metric for 
localizing objects, meaning there is a 50% overlap between 
the object predicted by the algorithm versus the golden 
standard.

From each included article, the following data points 
were collected: author, year of publication, type of CNN 
model used, radiographic views, output classes, ground 
truth label assignment, number of patients or radiographs, 
performance metric (e.g. sensitivity, specificity, accuracy), 
comparison of CNN versus radiologist or reports, whether 
external validation was performed and potential open access 
availability of the model (Table  1). The reported output 
classes include DRF detection (fracture yes/no), localiza-
tion and classification.
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Results

Included studies

The literature search resulted in a total of 576 articles; after 
removal of duplicates, 365 abstracts were screened. Forty-
six studies were full-text screened, and after quality assess-
ment, eighteen studies were included in this review. (Fig. 1). 
No new eligible studies were identified through reference 
lists.

Description of studies

Of the included studies, fourteen studies described detection 
[15, 18, 20, 26, 28, 30–38], one study both detection and 
classification [29], two studies both detection and localiza-
tion [13, 21] and one study localization and classification 
[39] of DRFs. No studies on the prediction of loss of thresh-
old alignment were found. Four studies used posterior-ante-
rior (PA) and lateral radiographs [15, 32, 36, 40], in five 
studies anterior-posterior (AP) and lateral [18, 28–30, 38], 
and in three studies [26, 34, 37] an extra oblique projection 
was used. Three studies only used lateral [33], AP [31], or 
PA [39] radiographs, and in three studies [20, 21, 35], the 
projection was not clearly described. As the ground truth, 
fifteen [15, 18, 20, 21, 26, 28, 29, 31–33, 36–40] studies 

Quality appraisal

In this study, the MINOR Criteria included the following 
items: disclosure, input features, ground truth, external vali-
dation, performance metric, and AI model (Table 2). Dis-
closure was reported in almost all the studies except Suzuki 
et al. [18]. All studies clearly described the study aim. Eight 
studies did not describe the input features used [15, 19–25]. 
Five studies [19, 22–25] did not specify the ground truth 
used as a reference standard for the AI model. The external 
validation method was described only in six studies [13, 15, 
26–29]. Two studies [23, 24] did not describe the perfor-
mance metric assessed in the studies. All studies described 
which AI model was used. According to the outcomes of the 
MINORS criteria, five studies were excluded because three 
or more criteria were missing.

Statistical analysis

If possible, a meta-analysis will be performed. If not pos-
sible due to the variance in utilized algorithms, an overview 
will be given, describing the number of patients or radio-
graphs used in training and (internal or external) validation, 
accuracy, sensitivity, specificity, AUC, F-1 score, average 
precision, and Youden index when present.

Table 2  Quality assessment according to adapted MINORS criteria
Study type Author, year Disclosure Study 

aim
Input 
features

Ground 
truth

External 
validation 
method

Perfor-
mance 
metric

AI 
model

Detection Antilla et al., 2022 1 1 1 1 0 1 1
Detection and localisation Blüthgen et al., 2020 1 1 1 1 1 1 1
Detection Cohen et al., 2022 1 1 1 1 1 1 1
Detection Ebsim et al., 2019 1 1 0 0 0 1 1
Detection and localisation Yahalomi et al., 2018 1 1 0 0 0 0 1
Classification Yang et al., 2021 1 1 0 0 0 0 1
Detection Gan et al., 2019 1 1 1 1 0 1 1
Localisation Hardalac et al., 2022 1 1 0 1 0 1 1
Detection Javed et al., 2023 1 1 0 0 0 1 1
Detection Joshi., 2022 1 1 0 1 0 1 1
Detection Kim, 2018 1 1 1 1 0 1 1
Detection Kim et al., 2021 1 1 1 1 1 1 1
Detection Lee et al., 2023 1 1 1 1 0 1 1
Detection Lindsey et al., 2018 1 1 0 1 1 1 1
Localisation and classification Min et al., 2023 1 1 1 1 0 1 1
Detection Oka et al., 2021 1 1 1 1 0 1 1
Detection Raisuddin et al., 2021 1 1 1 1 0 1 1
Detection Rashid et al., 2023 1 1 0 0 0 1 1
Detection Suzuki et al., 2022 0 1 1 1 0 1 1
Detection Thian et al., 2019 1 1 1 1 1 1 1
Detection and classification Tobler et al., 2021 1 1 1 1 1 1 1
Detection Ureten et al., 2022 1 1 1 1 0 1 1
Detection Zhang et al. 2023 1 1 1 1 0 1 1
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Two CNN models were compared by Kim et al. [34], 
where the sensitivity, specificity, AUC and accuracy were 
similar for both models. Lindsey et al. [15] reported the per-
formance of different test sets separately, where the AUC 
was 0.97, 0.98, and 0.99 for the internal, external, and clini-
cal data test sets, respectively.

Classification

Two studies reported the performance of the classification 
of DRFs [29, 39]. The AUC assessed separately by Tobler 
et al. [29] on fragment displacement, joint involvement, and 
detection of multiple fractures was 0.59, 0.68, and 0.84, 
respectively. The accuracy was 60%, 64% and 78%, respec-
tively [29]. Min et al. reported an AUC of 0.82, accuracy of 
81%, sensitivity of 83%, specificity of 72% and a F1-score 
of 0.86.

AI versus clinicians

Among the included studies, eight [15, 18, 26, 29, 31, 36, 
37, 40] compared the performance of AI and clinicians’ per-
formance. According to Blüthgen et al. [40], radiologists’ 
performance was comparable to internal data and better on 

used one or more radiologists’ or surgeons’ expertise to 
detect DRF. In addition, one study [34] used the radiologi-
cal reports, checked and verified by a radiology registrar 
competent, and one study [30] used the clinical diagno-
sis of orthopaedic surgeons. In one study [35], the ground 
truth was not reported. The number of included radiographs 
ranged from 221 [21] to 31,490 [15] and from 32 [21] to 
3500 [15] for training and testing sets, respectively. Valida-
tion sets were used in six studies [15, 20, 21, 26, 28, 30], 
ranging from 54 [20] to 1461 [28] radiographs. The total 
number of fractures on the radiographs used in the studies 
ranged from 221 [21] to 4452 [34] DRFs.

Detection

The sensitivity of fracture detection was reported in four-
teen studies [15, 18, 22, 26, 28, 30–35, 37, 38, 40], ranging 
from 80% [13] to 99% [18]. Specificity was also reported, 
from 73% [28] to 100% [13, 18]. The AUC was reported in 
twelve studies [15, 18, 27, 28, 30–33, 36, 37, 40, 29] rang-
ing from 0.87 [13] to 0.99 [30]. The accuracy was reported 
in nine studies [18, 29–32, 34, 35, 37, 38] ranging from 82% 
[22] to 99% [18]. In addition, Raisuddin et al. [36] reported 
a balanced accuracy of 76%. See Table 1.

Fig. 1  Inclusion and exclusion 
flowchart
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preferably prospectively validated. This validation is crucial 
to explore transportability and bias [41]. The lack of com-
monplace external validation shows that most algorithms 
cannot be used for daily practice yet.

The strengths of this review include the broad search in 
different databases and the quality assessment according to 
the modified MINORS criteria with AI-specific factors.

The included studies reported a sensitivity and specific-
ity between 80 and 100% in detecting DRFs. There was a 
significant decrease in performance between the internal 
and external validation set on the separate assessment of 
the performance on AP and lateral views. This showed the 
necessity of training a DL model on data comparable to the 
intended target data. On the other hand, to eventually build 
a model capable of being used on an outside institution, 
further improving the AI model’s performance on external 
validation data sets is necessary. When AP and lateral views 
were combined, they showed similar performance on both 
internal and external sets. The reported AUC and accuracy 
were good to excellent across the included studies. The 
F1-score reported in the included studies showed poor to 
good precision.

Three studies used localization in addition to detection. 
This helps clinicians look into the black box of the algo-
rithm, allowing them to check for any mistakes the algorithm 
might make. See Fig. 2 for different options for presenting 
localisations. Future studies might choose to implement 
similar visualizations to help clinicians implement this in 
their daily practice.

Some of the included studies used the same CNN architec-
ture backbone. For instance, Inception version 3 and version 
4 were used in two studies [31, 33], both show comparable 
sensitivity, specificity, and AUC. In addition, one study 
[28] used a combined Inception- Resnet-Faster R-CNN and 
showed lower specificity and AUC. The ResNet algorithm 
or backbone was used in five studies [21, 27–29, 35], all 
showing comparable performances of the algorithms.

In conclusion, AI models for detecting DRFs demon-
strate promising performances across various metrics. How-
ever, results may vary depending on each study’s dataset, 
model architecture, and evaluation methods. From a clinical 
perspective, DL and CNN algorithms have the potential to 
aid clinicians in medical imaging tasks and improve diag-
nostic accuracy in recognizing and consistently recording 
DRFs. Furthermore, we recommend focusing on diligent AI 
research, which involves presenting extensive outcomes, a 
comprehensive explanation of the dataset and the ground 
truth, and proper external validation.

external data. Cohen et al. [26] found AI sensitivity sig-
nificantly higher than initial radiology reports (IRR), with 
combined AI and IRR showing even greater sensitivity. 
Gan et al. [31] demonstrated that AI outperforms radiolo-
gists in accuracy, sensitivity, specificity, and Youden index. 
Comparisons with orthopaedic surgeons showed similar 
results. Lindsey et al. [15] revealed comparable sensitivity 
and AUC of aided and unaided emergency medicine clini-
cians by CNN. Notably, the model showed higher specific-
ity compared to unaided clinicians. Raisuddin et al. [36] 
showed higher radiologist performance in normal cases and 
similar performance in hard cases.

Suzuki et al. [18] showed equal to better accuracy, sensi-
tivity and specificity of CNN versus orthopaedic surgeons, 
though without statistically significant differences.

In Lee et al. [37], the sensitivity, specificity, accuracy, 
and AUC of two reviewers aided by AI increased in all 
fields compared to unaided. In addition, this study showed 
a decrease in mean interpretation time when aided by AI. 
Lastly, Tobler et al. [29] reported higher AUC for radiology 
residents than AI’s assessment of DRFs without osteosyn-
thetic material or cast.

Discussion

This systematic review provides an overview of various 
computer vision algorithms for detecting and classifying 
DRFs on plain radiographs. Overall, the included studies 
showed that the performance of DRF detection is excellent, 
with accuracies and AUC up to 100% and 0.99, respectively. 
Compared with clinicians’ performance, AI had at least 
comparable and often better results. The development of a 
DRF classification model of DRF reported accuracies and 
AUC of 60–81% and 0.59–0.84, respectively [29, 39]. No 
studies describing algorithms predicting the loss of thresh-
old alignment of DRFs were found.

This current study has several limitations. First, the com-
parability of the studies was limited. The studies were not 
consistent in the reported performance metrics. In addition, 
the studies used various types of DL and CNN models. 
However, the results of the studies show comparable per-
formances of the different types of AI used, and the hetero-
genicity of the models did not affect our research questions. 
Secondly, the role of AI in the classification of DRF was 
only reported in two studies with different assessments of 
classifications. Therefore, evaluating AI’s overall ability 
to classify DRFs is difficult. Thirdly, the ground truth was 
differently defined between studies or even not reported at 
all. Lastly, only six out of 18 studies performed an external 
validation of the AI model. To use AI in clinical practice, 
a model must be trained, tested, externally validated, and 
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