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Abstract
Purpose  Distal radius fractures (DRFs) are often initially assessed by junior doctors under time constraints, with limited 
supervision, risking significant consequences if missed. Convolutional Neural Networks (CNNs) can aid in diagnosing 
fractures. This study aims to internally and externally validate an open source algorithm for the detection and localization 
of DRFs.
Methods  Patients from a level 1 trauma center from Adelaide, Australia that presented between 2016 and 2020 with wrist 
trauma were retrospectively included. Radiographs were reviewed confirming the presence or absence of a fracture, as well 
as annotating radius, ulna, and fracture location. An internal validation dataset from the same hospital was created. An 
external validation set was created with two other level 1 trauma centers, from Groningen and Rotterdam, the Netherlands. 
Three surgeons reviewed both sets for DRFs.
Results  The algorithm was trained on 659 radiographs. The internal validation set included 190 patients, showing an accuracy 
of 87% and an AUC of 0.93 for DRF detection. The external validation set consisted of 188 patients, with an accuracy and 
AUC were 82% and 0.88 respectively. Radial and ulnar bone segmentation on the internal validation was excellent with an 
AP50 of 99 and 98, but moderate for fracture segmentation with an AP50 of 29. For external validation the AP50 was 92, 
89 and 25 for radius, ulna, and fracture respectively.
Conclusion  This open-source algorithm effectively detects DRFs with high accuracy and localizes them with moderate 
accuracy. It can assist clinicians in diagnosing suspected DRFs and is the first radiograph-based CNN externally validated 
on patients from multiple hospitals.
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Introduction

Distal radius fractures (DRFs) are among the most common 
fractures seen in emergency departments, frequently occur-
ring after a fall onto the outstretched hand [1]. Due to the 
urgency to make early management decisions in the emer-
gency departments, a tentative assessment of the radiographs 
is often made by a junior, non-radiology trained, clinician 
before the definitive radiology report is available [2]. Addi-
tionally, there might be a threshold to consult a supervisor 
24/7 a day. Interpretational errors can have significant con-
sequences for the patient, including delayed treatment and 
consequently poorer outcomes [3, 4].

In the field of Artificial intelligence (AI) coined Com-
puter Vision, Convolutional Neural Networks (CNN) have 
been of particular interest as a possible aid to (non-radiology 
trained) clinicians because of their ability to ‘read’ images, 
allowing them to recognize fractures [5]. Deep Learning, a 
form of machine learning based on these artificial neural net-
works, has garnered significant attention to achieve this goal. 
CNNs have exhibited superior capacity to radiologists in 
detecting DRFs on plain radiographs in recent studies with 
sensitivity and specificity between 81–94% and 78–100%, 
respectively (see Table 1) [6–11]. One CNN, created by Ima-
gen, has been approved by the United States Food and Drug 
Administration (FDA) and is commercially available, after 
a study demonstrated that emergency department clinicians 
show significant improvement with aid of this software [9, 
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12]. However, this algorithm is not freely accessible for test-
ing which limits its broad application in clinical practice 
and prevents further external validation in its current format.

The clinical application of the algorithms for orthopaedic 
trauma is still limited because of limited availability of open 
source algorithms that have been validated both internally 
and externally [13]. Most available studies have primarily 
trained and tested their algorithms on internal data sets, 
likely resulting in bias of CNN performance (i.e., overfit-
ting) that cannot be replicated by using an external valida-
tion dataset. For example, Blüthgen et al. tested their algo-
rithm with both internal validation and external validation 
datasets [6]. Their algorithm showed significantly poorer 
performance on the external radiographs, demonstrating the 
importance of incorporating external data in CNN training. 
As such, the philosophy of the current study is to present a 
trained open source algorithm that has been internally and 
externally validated. Furthermore, we will allow other cent-
ers to extend the validation of this algorithm for free and 
train it further to optimize its performances.

The aim of this study is to validate the performance of 
a recently developed ‘open source’ CNN with the ability to 
detect and localize DRFs in postero-anterior (PA) and lateral 
radiographs. Diagnostic accuracy, sensitivity, specificity, 
and area under the receiving operating characteristic curve 
(AUC) of this algorithm are the main outcome parameters.

Patients/methods

Ethical approval & guidelines

Ethical approval was granted by the ethics committee 
(CALHN 13991). There are no conflicts of interest. The 
study was performed in accordance with the Clinical AI 

Research (CAIR) checklist, a guideline for AI research in a 
healthcare setting [14].

Training data set

Patients with a suspected DRF presenting to the emergency 
department of a level-1 trauma center (hospital 1) after sus-
taining a wrist trauma were retrospectively included from 
the years 2016 to 2020, when both PA, lateral radiographs 
were present. The patient files were identified in the picture 
archiving and communication system (PACS) using ICD-9 
diagnostic codes, i.e., “fracture” and “radius”, and after-
wards manually checked if they were indeed a wrist radio-
graph. In the case of a wrist radiograph, they were checked 
against the exclusion criteria: pathology other than DRF (not 
including concomitant ulnar styloid fractures), presence of 
epiphyseal growth plates, poor image quality (e.g., arte-
facts, noise, under- or overexposure and casts that severely 
decrease image quality; such that physicians also cannot read 
the radiograph) and objects obstructing the distal radius. All 
included wrist radiographs were then assessed for a DRF 
was present or not.

Convolutional neural network

Modelled on the human visual cortex, CNNs learn and 
acquire knowledge through neural pathways consisting of 
various layers, including an input layer, hidden layer(s), and 
an output layer. Complex mathematical operations are per-
formed between the nodes and their weighted connections, 
ultimately resulting in algorithm training. In order to save 
substantial time and computational power, it is worthwhile 
using an established CNN that has already been trained to 
identify features in images. We used the open source CNN 
ImageNet, which has previously been trained with more 

Table 1   Previous studies investigating DRF detection on plain radiographs

Year Author Dataset size CNN Performance Conclusion

2017 Kim et al 1389 Sensitivity: 90%
Specificity: 88%
AUC: 0.95

Comparable to state-of-the-art fracture detection models

2018 Lindsey et al 34,990 Sensitivity: 94%
Specificity: 95%
AUC: 0.99

Accident & Emergency clinicians performed signifi-
cantly better when aided by AI

2019 Thian et al 7356 Sensitivity: 98%
Specificity: 73%
AUC: 0.90

CNN has high sensitivity in terms of detection and 
localization of the fracture

2019 Gan et al 2340 Sensitivity: 90%
Specificity: 96%
AUC:0.96

Similar performance to orthopaedic surgeons
Superior performance to radiologists

2020 Blütghen et al 824 Sensitivity: 80–90%
Specificity: 78%−100%
AUC: 0.87–0.95

Performance similar to that of radiologists
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than one million nonmedical images with over 1,000 object 
categories [15]. The performance of this model with our 
radiographs was evaluated in terms of accuracy, sensitivity, 
specificity, and AUC. The CNN was programmed in Python 
Version 3.6.8 along with Scikit-learn (0.20.3) and Tensor-
Flow (1.13.1).

The wrist radiographs were exported from PACS as Dig-
ital Imaging and Communications in Medicine (DICOM) 
files and subsequently anonymized with free open source 
software DICOM Cleaner [PixelMed Publishing, LLC]. 
The anonymized files were uploaded to an online computer 
vision training data platform LabelBox [16]. On LabelBox, 
two independent reviewers each confirmed the presence or 
absence of a fracture, and then annotated the radius, ulna, 
and region of interest (ROI) of the fracture, if present, on 
the training dataset. The reviewers had access to the origi-
nal radiologist report, and support from an experienced 
orthopaedic trauma surgeon in case of doubt. They did not 
have access to subsequent follow-up radiographs. As dem-
onstrated in Fig. 1, the fracture ROI was selected with both 
a rectangle (bounding box) and a polygon tool (segmenta-
tion) encompassing the entire fracture area. All labels and 
annotations of the initial training dataset were evaluated by 
a senior reviewer (KDON and JP). The consensus agreement 
between the two initial reviewers and the senior reviewers 
formed the ground truth for the training set.

The dataset was then sent to an institute specialized in 
Machine Learning to train the CNN model. The deep learn-
ing model that was evaluated in this study was a Mask 
R-CNN based on Detectron2 (an image detection and seg-
mentation algorithm), the backbone of which is a ResNet-50 

and an RPN module [17]. Specifically, our network is trained 
with stochastic gradient descent (SGD) for 6250 iterations 
with the initial learning rate being 0.02 and a mini-batch of 8 
images, changing models parameters till the optimum values 
have been reached. The learning rate, allowing the training 
to become more precise with each iteration, is reduced by a 
factor of 10 at iteration 3750 and 5625, respectively. Weight 
decay and momentum, each a way to create a complex model 
without overfitting, are set as 0.0001 and 0.9, respectively. 
Each image has gone through augmentation in the training 
process, by rotating, flipping, and zooming in. We initial-
ize our backbone networks with the weights pre-trained on 
ImageNet, allowing the algorithm to be familiar with images 
detection before specifying the training to DRFs. All experi-
ments were all performed with PyTorch framework on an 
Nvidia V100 GPU.

The code has been made publicly available for further 
training or external validation on GitHub here: https://​
github.​com/​AIML-​MED/​DRF_​Class​ifica​tion_​Public.

Internal validation

Subsequently an internal validation was performed to test the 
algorithm. Patients from hospital 1 were collected. Three sur-
geons (two trauma surgeons, one orthopaedic surgeon: FFAIJ, 
MMEW, JWC) were independently shown all radiographs and 
reviewed these for the presence or absence of a DRF and came 
to a consensus. They did not have access to the original radiol-
ogy report, or any follow-up images when reviewing. This was 
considered the ground truth of the internal validation. Just like 
on the training set, two independent reviewers (HVL, OC) then 

Fig. 1   The upper row of images 
demonstrates, from left to 
right, the annotations of ulna 
and radius in non-fracture 
radiographs in oblique, lateral 
and PA view. The lower row of 
images shows the annotations of 
ulna, radius, and the region of 
interest (e.g., fracture site) using 
both a rectangular and polygon 
tool
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annotated the radius, ulna, and ROI of the fracture (if present) 
and this was evaluated by a senior reviewer (KDON).

External validation

To properly test the generalizability of the algorithm, an 
external validation was performed. Patients from two differ-
ent level 1 trauma centers (hospital 2 and 3) were collected. 
The same three surgeons independently reviewed these cases 
for the presence or absence of a DRF and came to a consen-
sus. This was considered the ground truth of the external 
validation. The radiographs were then annotated, identical 
to the process described in the internal validation.

Statistics

Continuous variables are expressed as the mean with its 
standard deviations, and categorical variables as percent-
ages or frequencies. Accuracy describes the percentage of 
correctly identified fractures. Sensitivity is the proportion of 
correctly identified fractures out of all fractures. Specificity 
is the proportion of correctly identified non-fractures out of 
all non-fractures. Positive predictive value (PPV) is the ratio 
of patients truly diagnosed as positive to all those who had 
positive test results. Negative predictive value (NPV) is the 
ratio of subjects truly diagnosed as negative to all those who 
had negative test results. The AUC denotes the likelihood of 
a binary classifier system to correctly separate a particular 
variable into either a zero or one. AUC of 1 indicates perfect 
separation performance, whereas 0.5 indicates no ability to 
separate better than chance.

We also use detection metrics Average Precision 50% 
Overlap (AP50) to evaluate our model. AP50 is a commonly 
used metric to evaluate object detection models. An over-
lap between the manual localization and performance of the 
algorithm of at least 50% is considered correct, below 50% 
incorrect. The higher AP50 is, the better the model is in 
localizing objects. The AP50 is given for a bounding box, 
a less precise method of localization using a rectangle, and 
for segmentation, a precise method of localization using a 
polygon. See Fig. 1 for examples of manual segmentation 
and bounding boxes. Results are given as an average over all 
bounding box localizations and segmentations, and for each 
individual group: radius, ulna, and fracture. If a fracture is 
completely missed, this is also counted as incorrect.

Results

Demographics

A total of 6544 radiographs taken between 2016 and 2020 
were extracted from the record system of hospital 1. Due to 

the anonymization and randomization of the training set, it is 
not possible to ascertain patient numbers or characteristics. 
After eliminating images subject to our exclusion criteria, 
659 radiographs (PA, lateral or oblique) were available for 
further analysis. According to the ground truth, 315 DRFs 
were diagnosed and 344 had no visible fractures. All these 
radiographs were annotated and used to train the algorithm.

The internal validation consisted of 190 patients, 145 
patients with a DRF and 45 without a fracture, consisting in 
total of 498 radiographs (PA and lateral, and oblique when 
present). The external validation consisted of 188 patients, 
134 patients with a DRFs and 54 without a fracture, consist-
ing in total of 376 radiographs (PA and lateral). The inter-
nal validation and external validation numbers are based on 
comparative studies on the matter [7, 8, 11].

CNN performance: internal validation

The accuracy of the algorithm in detecting DRFs on the 
internal validation was 87%. The sensitivity of the CNN 
for recognizing a DRF was 85%, the specificity was 96%. 
The PPV was 98% and the NPV was 66%. The AUC of the 
algorithm for accurately predicting the presence of a DRF 
was 0.93.

For localization results in internal validation set using 
a bounding box, our model achieves an average AP50 of 
83 over all entities. For the localization of the radial bone 
bounding box the AP50 scored 99, the ulnar bone scored 100 
and for fracture localization it scored 50. For segmentation 
using a polygon in the internal validation set, our model 
achieves an average AP50 of 75. For the segmentation of 
the radial bone the AP50 scored 99, the ulnar bone scored 
98 and for fracture localization it scored 29.

CNN performance: external validation

The accuracy of the algorithm in detecting DRFs on the 
external validation was 84%. The sensitivity of the CNN for 
recognizing a DRF was 82% while the specificity was 89% 
The PPV was 95% and the NPV was 67%. The AUC of the 
algorithm for accurately predicting the presence of a DRF 
was 0.88.

For localization results in external validation set using 
a bounding box, our model achieves an average AP50 of 
80 over all entities. For the localization of the radial bone 
bounding box the AP50 scored 95, the ulnar bone scored 93 
and for fracture localization it scored 52. For segmentation 
using a polygon in the external validation set, our model 
achieves an average AP50 of 69. For the segmentation of 
the radial bone the AP50 scored 92, the ulnar bone scored 
89 and for fracture localization it scored 25.
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Discussion

The use of AI may improve accuracy of fracture detec-
tion on radiographs of patients at risk for a DRF. Studies 
exploring AI-based fracture recognition on radiographs 
have produced promising results with performance similar 
or superior to that of radiologists and orthopaedic sur-
geons (Table 1). Possible reasons why algorithms surpass 
clinicians are various; algorithms do not get tired, they 
are trained to do one specific task, and might recognize 
subtleties missed by humans [8]. Clinical usability of algo-
rithms, however, is limited due to poor external validation, 
of promising algorithms so far [13]. External validation of 
an algorithm is needed to correct for a false accuracy due, 
amongst others, significant image pre-processing.

This study has some limitations. First of all, all images 
of poor quality were excluded, defined as those with arte-
facts, noise or under- or overexposed, and other fractures, 
introducing a selection bias and possibly leading to a form 
of overfitting. External validation in a less processed data-
set might overcome this limitation. Secondly, the consen-
sus between the two independent reviewers and the senior 
reviewers was considered the ground truth for the training 
set. Their annotations may be prone to mistakes and sub-
ject to a learning curve throughout the process. This could 
influence the training of the algorithm. Further research 
is needed to explore if adding patient characteristics to 
the algorithm results in improved detection. Also, oblique 
radiographs are regularly used in Australia, but not in the 
Netherlands. This explains the difference in number of 
radiographs between the internal validation and external 
validation, despite having a similar number of patients. 
This could further explain the difference between the 
internal validation and external validation results. Finally, 
physicians look at the different radiographic views at the 
same time, allowing them to make a judgement based on 
multiple radiographs. The algorithm is only capable of 
looking at one view at the same time, and the accuracy is 
calculated as an average of these views. Combining the 
views might positively influence the algorithm and might 
be worth exploring in the future.

This study showed that the open source algorithm, that 
was trained with 659 radiographs, has an accuracy of 87%, 
a sensitivity of 85%, a specificity of 96%, a PPV of 98%, 
a NPV of 66% and an AUC of 0.93 for detecting distal 
radius fractures. The external validation had an accuracy 
of 84%, sensitivity of 82%, specificity of 89%, a PPV of 
95%, a NPV of 67% and AUC of 0.88.

Localization using a bounding box was excellent, with 
an AP50 of 99.0 and 100 for the radius and ulna respec-
tively, and good for fracture localization with an AP50 of 
50.0. The external validation showed similar results, with 

an AP50 of 94.8, 92.8 and 51.8 for the radius, ulna, and 
fracture respectively.

Segmentation of the radius and ulna is excellent, with an 
AP50 of 98.9 and 97.6 respectively, but moderate for frac-
ture segmentation with an AP50 of 29.3. The external vali-
dation showed slightly worse results, with an AP50 of 92.4, 
88.6 and 24.8 for the radius, ulna, and fracture respectively.

To date, this is the first CNN fracture detection tool that 
has been externally validated using radiographs from more 
than one hospital. The algorithm showed a very high PPV on 
external validation, implying usefulness in clinical practice 
as a tool to diagnose a DRF is promising. The sensitivity 
was higher than the specificity, indicating that adding more 
DRF cases might further improve results. However, it was 
chosen to use all available DRFs in the trainings set, rather 
than remove patients and aim for a 50/50 split between DRF 
and no-fracture cases, explaining the small disbalance in 
the training set. Further research has to be done regarding 
its clinical applicability, since previous studies have shown 
clinicians’ accuracy may improve using fracture detection 
algorithms [18].

Not only is the algorithm able to indicate whether there is 
a DRF or not, it is also capable of localizing it (see Fig. 2). 
This makes it easier for the physician to use the algorithm 
as a diagnostic tool when in doubt whether there is a frac-
ture or not (Fig. 3). It also localizes and segments the radial 
and ulnar bone, even on lateral radiographs. Perhaps not 
necessarily useful in a clinical setting as of yet, but future 
research could benefit from having automated bones detec-
tion and annotation by an algorithm, more quickly than a 
human can, for instance in pre-operative planning. Examina-
tion of the output of the algorithm shows that the algorithm 
struggles the most with diagnosing subtle, non-displaced 

Fig. 2   AP and lateral view of a patient with a DRF in the internal val-
idation set. The algorithm localizes the radius (orange), ulna (red) and 
fracture (purple)
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intra-articular fractures (see Fig. 4). The results for fracture 
segmentation are moderate, partially explained by the fact 
that if a fracture is missed or incorrectly predicted to be 
there, the AP50 drastically decreases. Perhaps more training 
data can improve these results. The results for localization 
and segmentation of the radius and ulna are almost perfect.

Compared to other studies that created CNNs for detect-
ing DRFs, our algorithm performed with similar sensi-
tivity and specificity. Our AUC of 0,93 was similar to 
other studies on their internal validation. While we did 
not test our algorithm versus radiologists or surgeons, 
the physicians in previous studies performed similar to 
our algorithm. Future studies should focus on differences 
in performance of physicians with or without the aid of 

an algorithm in detection of fractures, to strengthen the 
already published data. Lindsey et al. showed a 47% reduc-
tion of missed fractures in clinicians using their algorithm, 
with their sensitivity improving from 81 to 92% [9]. Fur-
thermore, the current dataset should be increased, to see 
if a higher accuracy can be obtained. Also, more complex 
fracture segmentation techniques should be tried to see if 
results can be improved. Perhaps the algorithm can get a 
more complete idea of the fracture when trained on several 
radiograph views at the same time, as well as 3D-imaging 
techniques such as computed tomography (CT) scans.

The created algorithm will be made freely available to 
the public, allowing other researchers to further improve 
and test the algorithm. This will provide more informa-
tion of the practical applications of this algorithm on the 
one hand, and insight if larger patient numbers from other 
hospitals will increase the accuracy on the other hand. No 
data is available on this so far.

In conclusion, the algorithm has demonstrated high 
accuracy in detecting DRFs on radiographs and moder-
ate accuracy in localizing them. This study shows simi-
lar results to previous algorithms, however the extensive 
external validation suggests clinical useability. Future 
studies are needed to compare this model’s performance 
(in addition) to that of human observers. Other centers will 
be able to use this algorithm, either by further training it, 
or by performing an external validation themselves.
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