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Abstract

Purpose The use of computed tomography (CT) in fractures is time consuming, challenging and suffers from poor inter-
surgeon reliability. Convolutional neural networks (CNNs), a subset of artificial intelligence (AI), may overcome shortcom-
ings and reduce clinical burdens to detect and classify fractures. The aim of this review was to summarize literature on
CNNss for the detection and classification of fractures on CT scans, focusing on its accuracy and to evaluate the beneficial
role in daily practice.

Methods Literature search was performed according to the PRISMA statement, and Embase, Medline ALL, Web of Science
Core Collection, Cochrane Central Register of Controlled Trials and Google Scholar databases were searched. Studies were
eligible when the use of Al for the detection of fractures on CT scans was described. Quality assessment was done with a
modified version of the methodologic index for nonrandomized studies (MINORS), with a seven-item checklist. Performance
of Al was defined as accuracy, F1-score and area under the curve (AUC).

Results Of the 1140 identified studies, 17 were included. Accuracy ranged from 69 to 99%, the F1-score ranged from 0.35 to
0.94 and the AUC, ranging from 0.77 to 0.95. Based on ten studies, CNN showed a similar or improved diagnostic accuracy
in addition to clinical evaluation only.

Conclusions CNNss are applicable for the detection and classification fractures on CT scans. This can improve automated and
clinician-aided diagnostics. Further research should focus on the additional value of CNN used for CT scans in daily clinics.
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Introduction

The use of computed tomography (CT) in trauma care is
substantially increasing. In the Netherlands, over 2 million
CT scans were made in 2019 and this number increases
each year [1]. Total-body CTs are increasingly used in acute
trauma settings and can be more cost-effective than standard
radiological imaging [2]. Increased use of imaging strains
radiologists, to the point of creating a shortage of radiolo-
gist in hospitals [3]. Examining CT scans and radiographs
to detect and classify fractures can be time consuming, chal-
lenging, and poor inter-observer variability among radiolo-
gists and (experienced) clinicians can be substantial [3].
Artificial intelligence (Al) could play a big role optimizing
workflows in the acute setting and allow clinicians to spend
their time more effectively.

Al can execute different tasks, ranging from searching
the web to self-driving cars—tasks that until a few years ago
could only be performed by humans. Deep learning (DL) is
a subset of machine learning (ML) that uses mainly convo-
lutional neural networks (CNNs) [4]. CNNs are combina-
tions of artificial neuron layers with different units. These
units operate like neurons of our brain [3]. CNNs can learn
to recognize discriminative features from data and assign
importance to various aspects in the image and to differenti-
ate one from another. An example of data used to train an
ankle fracture CT CNN is presented in Supplemental Video
1. While most earlier AI methods have led to applications
with subhuman performance, recent CNNs are able to match
and even surpass the capacity of humans detecting certain
fractures on radiographs, focusing on isolated fracture types
per model [5-9]. The strength of computers is their ability to
evaluate a vast number of examinations rapidly, consistently
and without exhaustion.

When clinicians are aided by DL-based automatic frac-
ture detection algorithms, the accuracy of clinical diagno-
sis might improve and time to diagnosis reduced, which
can be useful in, among others, an emergency setting.
Various studies have successfully applied CNNs to detect
fractures of various body parts on radiographs [5-9]. The
results in detecting and classifying fractures on radiographs
by CNNs are promising. However, only a few studies have
developed CNNSs for the detection of fractures on CT scans.
Therefore, we conducted this systematic review to give an
overview of studies using Al with CT scans to detect or
classify fractures. The aim of this study was to answer the
following questions: 1) What is the accuracy of a CNN
in detecting fractures on CT scans? 2) Does the use of
CNNs with CT scans improve the diagnostic performance
of clinicians?
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Materials and methods

Article selection, quality assessment and data
extraction

A systematic literature search was performed according
to the PRISMA statement [10] (Fig. 1) and conducted in
the following libraries: Embase, Medline ALL, Web of
Science Core Collection, Cochrane Central Register of
Controlled Trials and Google Scholar. The search strategy
was formulated together with a librarian (see appendix 1).

All published articles were searched. After removing
duplicates, titles and abstracts of the potentially eligible
articles were independently screened by two reviewers
(LD, SS). Subsequently, full-text screening was performed
using the predefined criteria to check eligibility. If the con-
clusion was inconsistent, a third reviewer was consulted
(JP). Articles met the inclusion criteria if AI was used to
detect fractures on CT scans in an orthopedic trauma set-
ting. The defined exclusion criteria were: review articles
or letters, conference abstracts, technique papers, studies
using robots, animal and cadaveric studies, non-orthopedic
fractures and studies not published in English or Dutch.
Covidence (Veritas Health Innovation, Melbourne, Aus-
tralia) was used for the screening process and full-text
review.

The quality of all included articles was assessed by two
independent reviewers (LD, SS). In case of a disagree-
ment, a third reviewer was consulted (JP). For the qual-
ity assessment, a modified version of the methodologic
index for nonrandomized studies (MINORS) instrument
was used, including the following items: disclosure, study
aim, input features, ground truth, dataset distribution, per-
formance metric and Al model (Table 1). Studies with low
scores on three or more items were excluded. Standard-
ized forms were used to extract and record data (Microsoft
Excel Version 16.21; Microsoft Inc, Redmond, WA, USA).

Outcome measures

In this study, the primary outcome was performance of the
CNNs used, measured by their accuracy, Fl-scores and
area under the curve (AUC). Seventeen studies met the
inclusion criteria and were used to answer this research
question. To answer the secondary question in this study,
ten studies comparing performance of the CNN to perfor-
mance clinicians were used.

The data points collected from each study were: author,
year of publication, anatomical location of the fracture,
Al models used (type), imaging direction of CT slices,
output classes, ground truth label assignment, number
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Studies identified through database searching -
Embase, Medline ALL, Web of Science Core
Collection, Cochrane Central Register of

Duplicates removed

Controlled Trials and Google Scholar from 1946 to
2021
(5 search terms)
(n=790)

A 4

Title and abstracts screened

A 4

(n=70)

Title and abstracts excluded

(n=720)

A 4

(n=651)

Full-text studies excluded

Studies included
(n=18)

Fig.1 PRISMA flow chart

of patients and performance metric (e.g., accuracy, AUC
curve) (Table 2).

Output classes included fracture detection (i.e., fracture
yes/no) and/or classification (i.e., OA/OTA classification).
All studies described the detection of fractures by the CNN,
and seven studies also performed fracture classification.

Studies used accuracy, Fl-score and AUC to meas-
ure the performance of the model. The Fl-score
(2*((precision*recall)/(precision +recall)) is the harmonic
mean of the precision (positive predictive value) and recall
(sensitivity) of the test, where it requires both to be high
for a favorable F1-score. The highest possible value is 1.0,
indicating a perfect precision and recall, and the lowest pos-
sible value is 0. If not assessed, the F1-score was calculated
when precision and recall were stated. The area under the
curve (AUC) is a score to measure the ability of a classifier

v (n=51)
Full-text studies assessed for eligibility .| Reasons:
(n=69) i - language 4

- Conference abstract 17
- No full text available 1
- Wrong study design 1
- Non orthopedic fractures 16
- NoCT 4
- NoAl 3
- Other 5

\ 4

to distinguish between classes. The score lies between 0.5 (a
classifier equal to that of chance) and 1 (an excellent classi-
fier). Where possible, accuracy and/or F1-scores were cal-
culated to facilitate comparison between studies.

Quality appraisal

The modified MINORS tool included the following items:
disclosure, study aim, input feature, ground truth, dataset
distribution and performance metric (Table 1). Disclosure
was reported in all but two studies [11, 12]. All studies
clearly stated their study aim, model used and how per-
formance was measured. The input feature was not clearly
specified in three studies [11, 13, 14]. These studies did not
mention what the inclusion and exclusion criteria were.
Three studies did not specify the ground truth (the reference
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Table 1 Quality assessment according to MINORS criteria

Author, year Study type

Disclosure  Study aim Input feature Ground truth External Perfor- Al model
validation mance
method metric

Castro-Zunti et al [17] Classification

Dreizin et al [18] Classification

Hu et al [13] Detection/classification
Jin et al [27] Detection
Kaiume et al [19] Detection

Meng et al [20] Detection/classification

Pranata et al [15] Detection/classification

Raghavendra et al [16] Detection
Rothetal [11] Detection
Small et al [14] Detection
Ukai wet al [21] Detection
Voter et al [28] Detection
Weikert et al [22] Detection
Yacoub et al [23] Detection
Yamamoto et al [12] Detection

Yoon et al [24] Detection/classification
Zhou et al [25]

Zhou et al [26]

Detection/classification

—_— e O e e O e e e e e e e e

Detection/classification

—_ o s s O O e e e O e e
G U o T = T = S S S G G
B e T S S Sy VG U A G G G UG UGG U U
— o e e e e e e e e e s e e e e
— o e e e R e e e e e e e e e e

standard used in AI) [11, 15, 16]. One study was excluded
after the quality assessment, because it scored too low on
three items: disclosure, input feature, and ground truth [11].

Results
Included studies

The search yielded a total of 1140 articles. After duplicate
removal, 720 abstracts were screened. Sixty-nine studies
were selected for full-text screening, of which eighteen
remained. No new eligible studies were identified through
screening the reference lists. One study was excluded after
quality assessment, because the risk of bias was deemed too
high due to unclear reporting of disclosure, input feature and
ground truth [11]. Seventeen studies were used for analysis.

Description of studies

All seventeen studies used a CNN to detect and /or clas-
sify fractures on CT scans [12-28]. Eight studies addressed
detection of rib fractures [13, 17, 19, 20, 22, 25-27], three
studies the performance for detection [12, 21] and classifi-
cation [18] of pelvic fractures, four for detection of spine
fractures [14, 16, 23, 28], one for detection and classification
of femur fractures [24] and one of calcaneal fractures [15].
Fourteen studies used two output classes (fracture yes/no).

@ Springer

One study on spine fractures used three output classes: com-
pletely displaced, incompletely displaced and compression
fracture [14]. In addition, two studies used fresh, healing
and old fracture as output classes [25, 26]. In 12 studies, the
ground truth for diagnosis and classification of the fractures
was the conclusion of two or more experts, who interpreted
the CT scans independently [12—14, 17-20, 23, 25-28]. One
study used radiology reports from routine care as ground
truth [22]. Two studies did not specify how many experts
provided the ground truth [21, 24]. Thereby, two studies did
not report the ground truth [15, 16]. The number of patients
included in the studies ranged from 39 [19] to 8529 [20]
fractures.

Primary outcome: the performance of CNN

The performance was defined in various ways among stud-
ies. Accuracy on detection and/or classification was meas-
ured in eleven studies [12-18, 20, 22, 24, 25], ranging from
69.4% [12] to 99.1% [16]. Eight studies used the F1-score
to assess performance instead: in two the Fl-score was
assessed for the classification of healing status [25, 26], in
one for displacement [21], and in five [13, 18-20, 22] for
the detection of fractures. Additionally, we calculated the
F1-scores in three studies [12, 23, 28] to facilitate compari-
son. Fl-scores ranged from 0.35 in Yacoub et al. [23] to
0.94 in Meng et al. [20]. Four studies reported the AUC as
a performance metric [17, 21, 23, 25], ranging from 0.770
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[25] to 0.947 [17]. Zhou et al. [25] reported the AUC on
classification of challenging fractures compared to the other
three studies with more simple fracture detection. One study
just reported a sensitivity of 92.9% [27].

In Castro-Zunti et al. [17], the accuracy and AUC scores
of four different AI models were compared for 612 patients.
They found that the CNN model InceptionV3 achieved the
highest average accuracy of 96%, when the CT slices were
divided into three classes (acute, old (healed) and normal
(non-fractured). In Yoon et al. [24], the data were divided
into ten classes (based on the AO/OTA classification [29])
and the accuracy of the different numbers of output classes
was reported for 85 patients. Binary classification (no frac-
ture vs fracture) achieved the highest accuracy of 97%.
When the data were divided into more classes (AO/OTA
classification [29]), the accuracy decreased to the lowest
value of 90% for ten classes, as compared to the ground
truth by orthopedic surgeons. Dreizin et al. [18] reported the

20000
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Number of CTs

5000

83%
80% oL
0

o 8%  wmm 15

superiority of translational instabilities (85%) over rotational
ones (74%) on the accuracy and F1-score of their model [18]
for 373 patients. Zhou et al. [25] reported improved perfor-
mance on 1020 patients using CTs combined with patient
information compared (accuracy for three different models:
85.2%, 90.4% and 88.5%) to just CTs alone (accuracy for
three different models: 78.8%, 81.3% and 73.9%) [25]. In
another—earlier—study, Zhou et al. [26] reported that the
mean Fl-score of healing rib fractures was the highest and
of old fractures the lowest (0.856 vs. 0.770).

In Fig. 2, the amount CTs for training, validation and test-
ing are plotted against the accuracy, with increasing accu-
racy from left to right. The study with the most CTs reported
an average accuracy of 92% [14]. The highest accuracy of
97% was reported in a study [17] with only 612 CTs.

In summary, the reported outcomes on accuracy (ranging
from 69.4 to 99.1%), the Fl-score (from 0.35 to 0.94), the
AUC (from 0.770 to 0.947) and the sensitivity (92.9%) were

92%
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Fig.2 Correlation between accuracy and total number of CTs
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assessed on different classifications, CNN models and train-
ing, validation and testing sets across the included studies.

Secondary outcome: CNN and clinicians

Ten out of seventeen studies compared a CNN model to
the diagnostic performance of radiologists [14, 17, 22, 23,
25-27] or radiology reports [13, 22, 23]. Seven [14, 17, 22,
23, 25-27] out of these ten studies compared the sensitivity
of a CNN model to radiologists. In three studies [17, 26,
27], the CNN model solely or as an additional CNN model
resulted in a higher sensitivity compared to the radiologist
alone. Three studies showed a similar sensitivity for CNN
and radiologist, [22, 23, 25] and one [14] showed a decrease
in sensitivity with CNN. Four studies reported a significant
reduction in time to diagnosis when a radiologist was aided
by a CNN [20, 25-27].

Two out of ten studies compared the accuracy of CNN
vs clinicians [18, 20]. In Meng et al. [20], junior radiolo-
gists significantly improved their accuracy when assisted by
a CNN for detection and classification of fractures. Expe-
rienced radiologists showed similar improvement [20]. In
Dreizin et al. [18], the model was equivalent in accuracy
compared to radiologists. One study showed that when CNN
is combined with clinical reports, the number of missed
diagnoses is reduced by 88% [13].

In summary, the four studies [13, 20, 26, 27] that reported
the performance of a CNN as an aid for the radiologist
showed that CNN increases the performance of detec-
tion and classification of fractures. Twelve [13, 15-20,
22, 24-27] out of seventeen studies concluded that the use
of a CNN improved or could improve clinical care. In the
remaining five studies, three studies [14, 21, 28] recommend
CNN as a second-stage interpretation to assist radiologists,
in one performance was inferior to clinical radiology reports
[23] and lastly, one did not report on improvement [12].

Discussion

In this systematic review, the results of several studies using
Al for fracture detection and classification—in particular
convolutional neural networks (CNNs)—were analyzed. The
included studies reveal that CNNs show good performance
in detecting and classifying various fractures on CT scans.
The use of CNNs may add value and efficiency to several
components of the skeletal imaging workflow in trauma
care. The overall conclusion in most of studies was that
CNNss are applicable in aiding clinicians, by reducing both
time to diagnosis and number of missed diagnoses while
improving the diagnostic performance. In addition, CNNs

@ Springer

have proven to be very consistent, in contrast to the high
inter-observer variability among radiologists and surgeons,
when interpreting CT scans [3]. Due to the scarcity of stud-
ies reviewing the place of CNNs in trauma CT imaging, the
search strategy was very broad, and various libraries were
queried. In addition, this study looks at the comparison of
CNN versus clinicians or CNN as an assistant for clinicians.

This study should be interpreted in light of strengths and
weaknesses. First, comparability of the studies is limited,
because some fractures may be easier to detect, have differ-
ent characteristics, and are in different surrounding anatomi-
cal structures than others. However, the results of the studies
show comparable performances across the board and this
heterogenicity did not affect answering our research ques-
tions. Secondly, different definitions for the ground truth
were used among the various studies. For example, ground
truth labels might be determined by various numbers of
radiologists with different levels of expertise. An impor-
tant note is that all these reference standards are subject to
human biases. Lastly, to date, only a small number of studies
have investigated the use of Al for fracture detection on CT
scans, in limited patient group sizes. This may overestimate
the potential benefit of Al, and therefore, future research
should overcome this shortcoming. In addition, for the use
of CNN models in daily practice, these models need to be
further developed, with greater training and testing sets,
external validation and prospective validation. However, if
the beneficial effect of Al in fracture diagnosing and treat-
ment results in improvement, this might impede extensive
changes for the daily clinic. Strengths include the search
of multiple databases, the use of a modified MINORS that
included CNN-specific factors such as the input feature,
ground truth, dataset distribution and performance metric.
Future studies investigating Al on CTs for fracture detec-
tion and classification should include a wide data base of
training, validation and testing sets, report demographic
and diagnostic performance metrics, external validation of
the CNN model [30] and the investigation of more common
fractures (for example, wrist and ankle).

In general, for CNNs, it is assumed that the larger the
dataset, the higher the performance. Training with a small
dataset is a major cause of overfitting and does not lead to
suitable generalization of performance. Due to the hetero-
geneity of the studies, straightforward conclusions for the
recommended size of datasets cannot be drawn. However,
a clear correlation for all fractures sites between accuracy
and data size, with some studies reaching perfect accuracy
with small datasets of less than 1200 CT scans, seems to be
lacking. Taking this in consideration, in combination with
the limited time of experts to provide high-quality labels,
we recommend a stepwise approach of small dataset that
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increases in increments until adequate performance, or pla-
teau is reached.

Most studies used the same base CNN architectures.
Five studies used ResNet [14, 15, 18, 22, 25]. They showed
a similar accuracy, while investigating different anatomi-
cal locations. Two studies used YOLOv3 and both showed
similar F1-scores [21, 26]. Two studies used the CNN model
VVG-16 [12, 15]. The accuracy measured in these studies
was divergent. Pranata et al. [15] presented a very accurate
CNN model for detection of calcaneal fractures, while the
accuracy found for detection of pelvic fractures [12] was
significantly lower. A reason for this difference could be the
group size of both studies; 1931 calcaneal fractures vs. 103
pelvic fractures. Furthermore, the stability of the pelvis is
based both on bony and/or ligamentous injury, a much more
challenging task compared to finding cortical fractures.

RestNet (or a modified version) was the most used CNN
network, with reported accuracies between 73 and 98%. The
best-performing model was reported by Raghavendra et al.
[16] that showed an average accuracy of 96.51%. This model
was developed by the authors, however, without external
validation which warrants some caution in interpretation of
the results [30]. Less than half (6/17) of all studies reported
the use of an external validation. To implement in clinical
practice, external validation of CNN models is crucial to
explore transportability and bias [30] and will be the topic
of future studies.

Other fields are ahead of orthopedics with regard to the
use of CNNs as computer-aided detection. CNNs have been
reported in oncology for: the classification of biopsy-proven
masses and normal tissue on mammograms [31], classifi-
cation of skin cancer [32] and the automated detection of
pathological mediastinal lymph nodes in lung cancer [33].
CNN s have been shown to improve diagnostic performance
in detection of lung nodes and coronary artery calcium on
CTs in lung cancer screening [34]. The use of CNNs in
fracture detection and classification is only following in the
footsteps of much further developments in other specialties.

In conclusion, CNNs can detect fractures and important
fracture characteristics on CT scans, which may be used to
guide treatment and optimize diagnosis of fractures. In addi-
tion, computers can evaluate a vast number of examinations
rapidly, consistently and without exhaustion. If CNNs are
trained well, using at least multiple experts to provide the
ground truth, this could reduce the inter-observer variabil-
ity plaguing daily practice, and be a valuable application
in a trauma setting by reducing time to diagnosis. Further
research is needed to explore strengths and weaknesses of
CNNs in an acute trauma setting.

Appendix: 1. Search

Narrative review

Database via Years of Records Records after
searched coverage duplicates

removed
Embase Embase.com 1971—Pre- 440 430

sent

Medline Ovid 1946—Pre- 272 105
ALL sent

Web of Sci- Web of 1975—Pre- 304 134
ence Core Knowledge sent
Collec-
tion*

Cochrane Wiley 1992—Pre- 24 13
Central sent
Register of
Controlled
Trials

Other sources: Google Scholar (100 top- 100 39
ranked)

Total 1140 721

*Science Citation Index Expanded (1975-present); Social Sciences
Citation Index (1975-present); Arts & Humanities Citation Index
(1975-present); Conference Proceedings Citation Index- Science
(1990-present); Conference Proceedings Citation Index- Social Sci-
ence & Humanities (1990-present); Emerging Sources Citation Index
(2015-present)

Embase 440

(‘fracture'/exp OR (‘injury'/de AND 'orthopedics'/de) OR
((fracture* NOT (root-fractur* OR dental)) OR ((traum* OR
injury OR injuries) AND orthop*) OR ((broken) NEAR/6
(bone*))):ab,ti,kw) AND ('x-ray computed tomography'/exp
OR 'computed tomography scanner'/exp OR 'radiomics'/de
OR 'bone radiography'/de OR 'computer assisted tomogra-
phy'/de OR 'radiography'/de OR ‘joint radiography'/de OR
(((X-ray) NEAR/3 (tomograph*)) OR CT OR CTS$imag*
OR CT$scan* OR ((compute*) NEAR/3 (tomograph*))
OR radiomic* OR radiograph* OR arthrograph*):ab,ti,kw)
AND (‘convolutional neural network'/de OR 'machine
learning'/exp OR 'artificial intelligence'/exp OR (((neural*)
NEAR/3 (network*)) OR CNN OR ((machine* OR deep*)
NEAR/3 (learn*)) OR ((artific* OR machin*) NEAR/3
(intelligen*)) OR support-vector*):ab,ti,kw) NOT ((animal/
exp OR animal*:de OR nonhuman/de) NOT ('human'/exp)).

Medline 272
(exp Fractures, Bone/ OR (Wounds and Injuries/ AND

Orthopedics/) OR ((fracture* NOT (root-fractur* OR den-
tal)) OR ((traum* OR injury OR injuries) AND orthop*) OR
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((broken) ADJ6 (bone*))).ab,ti,kf.) AND (exp Tomography,
X-Ray Computed/ OR Tomography Scanners, X-Ray Com-
puted/ OR Radiography/ OR Arthrography/ OR (((X-ray)
ADJ3 (tomograph*)) OR CT OR CTS$imag* OR CT$scan*
OR ((compute*) ADJ3 (tomograph*)) OR radiomic* OR
radiograph* OR arthrograph*).ab,ti,kf.) AND (exp Artificial
Intelligence/ OR (((neural*) ADJ3 (network*)) OR CNN
OR ((machine* OR deep*) ADJ3 (learn*)) OR ((artific* OR
machin*) ADJ3 (intelligen*)) OR support-vector*).ab,ti,kf.)
NOT (exp Animals/ NOT Humans/).

Cochrane 24

(((fracture* NOT (root-fractur* OR dental)) OR ((traum*
OR injury OR injuries) AND orthop*) OR ((broken)
NEAR/6 (bone*))):ab,ti,kw) AND ((((X-ray) NEAR/3
(tomograph*)) OR CT OR CT-imag* OR CT-scan* OR
((compute*) NEAR/3 (tomograph*)) OR radiomic* OR
radiograph* OR arthrograph*):ab,ti,kw) AND ((((neural*)
NEAR/3 (network*)) OR CNN OR ((machine* OR deep*)
NEAR/3 (learn*)) OR ((artific* OR machin*) NEAR/3
(intelligen*)) OR support-vector*):ab,ti,kw).

Web of Science 304

TS = ((((fracture* NOT (root-fractur* OR dental)) OR
((traum* OR injury OR injuries) AND orthop*) OR
((broken) NEAR/5 (bone*)))) AND ((((X-ray) NEAR/2
(tomograph*)) OR CT OR CT-imag* OR CT-scan* OR
((compute*) NEAR/2 (tomograph*)) OR radiomic* OR
radiograph* OR arthrograph*)) AND ((((neural*) NEAR/2
(network*)) OR CNN OR ((machine* OR deep*) NEAR/2
(learn*)) OR ((artific* OR machin*) NEAR/2 (intelligen*))
OR support-vector*)) NOT ((animal* OR rat OR rats OR
mouse OR mice OR murine OR dog OR dogs OR canine
OR cat OR cats OR feline OR rabbit OR cow OR cows OR
bovine OR rodent* OR sheep OR ovine OR pig OR swine
OR porcine OR veterinar* OR chick* OR zebrafish* OR
baboon* OR nonhuman* OR primate* OR cattle* OR goose
OR geese OR duck OR macaque* OR avian* OR bird* OR
fish*) NOT (human* OR patient* OR women OR woman
OR men OR man))).

Google Scholar

fracture ‘X-ray tomography’|CTI’CT-image’l’CT-
scan’l’computed tomography’lradiography ‘neural
network’ICNNI’machineldeep learning’|’artificiallmachine
intelligence’I’support-vector’ -root -dental.
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