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classification which showed good results, and a second 
study did a more in-detail look at fragment displacement, 
joint involvement and multiple fragments, with less promis-
ing results (Table 2).

Although distal radius fractures (DRFs) are one of the 
most common fractures [11, 12], not one of the 20 clas-
sification systems has been proven reliable in terms of 
inter-observer agreement [13]. Several studies have shown 
that the reliability of the most common classification sys-
tems, such as Frykman, Older, Fernandez, and AO/OTA, 
consistently varies from poor to good when evaluated 
(Table 3) [13–22]. Studies on the most used AO/OTA clas-
sification system, showed an undesired wide spectrum of 

Introduction

Developing a fracture classification tool that does not suf-
fer from inherent surgeon bias is of interest. Convolutional 
Neural Network (CNN) performed on the same level as 
clinicians in detecting fractures of the distal radius, hand, 
ankle, hip, and proximal humerus on plain radiographs 
[1–3], as also shown earlier by our research group in this 
journal [4]. Multiple studies showed high performance 
in classifying proximal humeral, hip, and knee fractures 
(Table 1) [3, 5–8]. Two studies have attempted classifying 
DRFs, but did not use traditional classification systems [9, 
10]. Instead they used an extra-articular vs intra-articular 
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inter- and intra-observer reliability outcomes with kappa 
scores between 0.28–0.74 and 0.28–0.87 respectively, even 
for the main fracture types A, B and C. [14–22].

Fracture classification should facilitate effective discus-
sion about fracture characteristics and desired treatment 
options between healthcare professionals regarding radio-
graphic findings. Moreover, it plays an essential role in 
research as it enables, 1) a standardized method to describe 
fractures in research, 2) a consistent method of recording in 
the electronic patient system, and 3) a comparison of studies 
using the same classifications. Furthermore, a reliable frac-
ture classification system can provide insight into clinical 
decision-making [23]. For these reasons, improving intra- 
and interobserver reliability and minimizing variability is 
vital.

The aim of this study is to (externally) validate the per-
formance of an ‘open source’ CNN to classify DRFs in pos-
tero-anterior (PA) and lateral radiographs according to the 
AO/OTA classification system.

Patients/methods

Study design

In this diagnostic imaging study an open-source CNN algo-
rithm to classify DRFs according to the AO/OTA classifi-
cation system was developed. For the training of the CNN 
algorithm, patients with a suspected DRF presenting to the 
Emergency Room of the Flinders Medical Centre (FMC), 
a level-1 trauma center, between the years 2016 and 2020, 
with PA and lateral radiographs (and oblique when present) 
were retrospectively included. Exclusion criteria included 
pathology other than DRF (not including concomitant ulnar 
styloid fractures), presence of epiphyseal growth plates, 
and poor image quality obstructing the distal radius (e.g., 
artifacts, noise, objects, under- or overexposure and casts 
that severely decrease image quality). Ethical approval was 
granted by the ethics committee (CALHN 13991). There are 
no conflicts of interest. The study was performed in accor-
dance with the Clinical AI Research (CAIR) checklist, a 
guideline for AI research [24].

Table 2  Results of studies found in literature determining the per-
formance of x-ray-based CNN algorithms in classifying distal radius 
fractures. The sensitivity, specificity, accuracy and AUC were used to 
describe the performance
Study Classification 

system
Sensi-
tivity 
(95%CI)

Speci-
ficity 
(95%CI)

Accu-
racy 
(95%CI)

AUC 
(95%CI)

Tobler 
et al., 
2021

Fragment 
displacement:
Joint 
involvement:
Multiple 
fragments:

* * 59.7%
63.7%
78.2%

Set A: 
Set B
0.59: 
0.92
0.62: 
0.90
0.84: 
0.91

Min 
et al., 
2023

Extra-articular 
vs intra-articu-
lar fractures

83% 72% 81% 0.82

Study Classification 
system

Interobserver reliability 
(range per classification 
type if given by study)

Intraobserver reliability 
(range per classification 
type if given by study)

Radio-
graphs 
(n)

Andersen et al. 1996 AO/OTA
Frykman

0.64
0.34–0.36

0.57–0.70
0.40–0.61

55

Kreder et al. 1996 AO/OTA 0.68 0.67–0.86 30
Macdermid et al. 
2001

AO/OTA
Frykman
Older

0.38
0.35
0.73

*
*
*

128

Jin et al. 2007 AO/OTA
Frykman

0.28–0.71
0.24–0.51

0.45–0.57
0.40–0.63

43

Ploegmakers et al. 
2007

AO/OTA
Frykman
Older
Fernandez

*
*
*
*

0.52
0.26
0.27
0.42

5

Plant et al. 2015 AO/OTA 0.39–0.66 0.53–0.75 *
van Buijtenen et al. 
2015

AO/OTA 0.32–0.50 0.54–0.87 54

Jayakumar et al. 
2016

AO/OTA 0.66–0.74 0.28–0.74 96

Waever et al. 2018 AO/OTA
Frykman
Older

0.45
0.41
0.10

0.58–0.87
0.46–0.63
0.10–0.21

*

Table 1  Results of studies found 
in literature determining the 
performance of x-ray-based 
CNN algorithms in classifying 
non-distal radius fractures. The 
sensitivity, specificity, accuracy 
and AUC were used to describe 
the performance. * Data not 
available
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Training dataset, labeling, and annotations

The picture archiving and communication system (PACS) 
was searched for eligible patients with ICD-9 diagnostic 
codes, i.e.,"fracture"and “radius”. The radiographs were 
exported from PACS as Digital Imaging and Communica-
tions in Medicine (DICOM) files and subsequently ano-
nymized with free open-source software DICOM Cleaner 
[PixelMed Publishing, LLC]. The DICOM files were then 
uploaded to an online computer vision training data plat-
form Labelbox [25]. These images were not pre-processed. 
The radiographs were labeled to the presence or absence of 
a DRF and type of fracture according to the AO/OTA classi-
fication (2R3A for extra-articular fractures, 2R3B for partial 
articular fractures, 2R3C for complete articular fractures). 
After the image was labeled, the radius, ulna, and fracture 
were annotated (Fig.  1). The fracture was annotated with 
a rectangle and a polygon tool encompassing the fracture. 
Two independent reviewers performed the inclusion and 
exclusion and the labeling and annotations. All radiographs 
were checked by a senior researcher (KON, JP), under the 
supervision of an (orthopedic) trauma surgeon (FIJ, JD).

Development of the algorithm

CNNs are extensively used in visual imagery analysis. 
These are complex multilayered networks comprised of 
artificial neurons [26]. The deep learning model evaluated in 
this study is a state-of-the-art object detection method Mask 
R-CNN based on Detectron2 [27]. The model consists of 
a backbone ResNet architecture with 50 layers and Region 

Proposal Network (RPN) module for bounding box pro-
posals generation. First, we initialize the model with Ima-
geNet pre-trained parameters. Our experiment sets the batch 
size to 8, and the base learning rate is initialized at 0.02. 
This process iterates for 6250 iterations. We repeated this 
experiment 5 times. All experiments are implemented with 
PyTorch framework on one Nvidia V100 Graphics Process-
ing Unit (GPU). The code has been made publicly available 
for further training or external validation on GitHub (​h​t​t​p​​s​:​/​​
/​g​i​t​​h​u​​b​.​c​​o​m​/​A​​I​M​L​​-​M​E​​D​/​D​​R​F​_​​C​l​a​s​​s​i​​f​i​c​a​t​i​o​n​_​P​u​b​l​i​c).

Internal validation

To evaluate performance of the algorithm, an internal vali-
dation was performed. Further patients from the FMC, the 
same hospital from which the training dataset was gathered, 
were collected in the same way as described above. Three 
(orthopedic) trauma surgeons (FIJ, MW, JC) reassessed 
all radiographs and achieved consensus on the presence or 
absence of a DRF and the fracture type according to the AO/
OTA classification [28]. Any continued disagreements about 
the classification were solved during a consensus meeting.

External validation

To test the generalizability of the algorithm, external vali-
dation was performed, meaning that the algorithm is tested 
with patients from external hospitals, in this case, hospitals 
from the other side of the world. Patients from the Univer-
sity Medical Center Groningen (UMCG) and the Erasmus 
University Medical Center (EMC), both level-1 trauma 

Study Classification 
system

Interobserver reliability 
(range per classification 
type if given by study)

Intraobserver reliability 
(range per classification 
type if given by study)

Radio-
graphs 
(n)

Andersen et al. 1996 AO/OTA
Frykman

0.64
0.34–0.36

0.57–0.70
0.40–0.61

55

Kreder et al. 1996 AO/OTA 0.68 0.67–0.86 30
Macdermid et al. 
2001

AO/OTA
Frykman
Older

0.38
0.35
0.73

*
*
*

128

Jin et al. 2007 AO/OTA
Frykman

0.28–0.71
0.24–0.51

0.45–0.57
0.40–0.63

43

Ploegmakers et al. 
2007

AO/OTA
Frykman
Older
Fernandez

*
*
*
*

0.52
0.26
0.27
0.42

5

Plant et al. 2015 AO/OTA 0.39–0.66 0.53–0.75 *
van Buijtenen et al. 
2015

AO/OTA 0.32–0.50 0.54–0.87 54

Jayakumar et al. 
2016

AO/OTA 0.66–0.74 0.28–0.74 96

Waever et al. 2018 AO/OTA
Frykman
Older

0.45
0.41
0.10

0.58–0.87
0.46–0.63
0.10–0.21

*

Table 3  Range of kappa values of 
studies determining the intra-and 
interobserver reliability in the 
literature comparing AO/OTA 
(types A, B, C) with Frykman, 
Fernandez and Older classifica-
tion system of DRF on plain 
radiographs. * Data not available
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Statistical analysis

The performance of the algorithm is presented in several 
metrics. First, we assessed the algorithm's accuracy by cal-
culating the percentage of rightly classified DRF among all 
cases. Then the AUC was calculated for each classification 
by plotting the true positive rate against the false positive 
rate (1-specificity). The AUC indicates how adequately 
the algorithm can distinguish between two groups. Lastly, 

centers in the Netherlands, presented at the Emergency 
Room with a suspected DRF between 2015 and 2020 were 
collected. The same three (orthopedic) trauma surgeons 
(FIJ, MW, JC) independently reassessed all radiographs for 
external validation according to the AO/OTA classification 
until consensus was reached. The surgeons’ inter-observer 
agreement of the external validation patients was calculated.

Fig. 1  Examples of the labeling and annotation process of a type A (first row), type B (second row) and type C (third row) fracture using Labelbox 
software. The radius (red), ulna (orange), fractured area (yellow box) and fracture zone (yellow polygon) are indicated with different colors
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validation contained 47 patients with a 2R3A fracture, 45 
2R3B, 53 2R3C and 45 without a fracture.

The external validation consisted of 200 patients, of 
which 12 patients were excluded due to poor image qual-
ity, making the final set 188 patients. The external valida-
tion data set contained 48 patients with a 2R3A fracture, 
27 2R3B, 59 2R3C and 54 without a fracture. It consisted 
of a total of 376 radiographs (PA and lateral). The overall 
number of images in the validation and external validation 
data sets are based on comparative studies on the matter [1, 
29, 30].

Gold standard: surgeon interobserver agreement

Three (orthopedic) trauma surgeons independently clas-
sified each fracture in the internal and external validation 
sets. Using the results from the external validation, an inter-
observer agreement was calculated. The classifications of 
each surgeon before any consensus meeting were used, 
including the option ‘exclude’ in case of perceived bad 
image quality. The overall inter-observer agreement was 
0.65 (95%CI 0.60–0.69), often referred to as substantial 
agreement [31]. See Table  4 for the inter-observer agree-
ment of each individual classification.

CNN performance: internal validation

The algorithm's accuracy in classifying DRFs on the inter-
nal validation was 62%. The AUC for type 2R3A was 0.84, 
type 2R3B 0.63, type 2R3C 0.75, and patients with no DRF 
0.93. Table 5 demonstrates the sensitivity and specificity of 
the algorithm. Removing the patients without a DRF did not 
improve results and are further specified in Table 6.

the sensitivity and specificity for classifying each type of 
fracture are calculated. The sensitivity and specificity are 
the proportion of true positives and true negatives that the 
CNN model classifies as such. Statistical analyses were per-
formed using SPSS version 26.0. The internal and external 
validation sets are seen as two different outcomes, so results 
are presented for both sets individually.

To present information regarding the inter-observer 
agreement, a Fleiss'kappa analysis was performed, which 
will be presented with a 95% confidence interval.

Results

Dataset

A total of 659 wrist radiographs from between 2016 and 
2020 were included in the Flinders Medical Center record 
system to train the algorithm. Because of the anonymiza-
tion process, it was not possible to track down the patient 
characteristics. A total of 188 radiographs were labeled as 
containing a 2R3A classified DRF, 65 radiographs as 2R3B, 
62 as 2R3C, and 344 did not have a fracture.

The internal validation data set consisted of 195 patients 
from whom 498 radiographs (PA, lateral, and oblique when 
present) were available. 5 patients were excluded due to 
poor image quality (as decided by the 3 (orthopedic) trauma 
surgeons), making the final set 190 patients. The internal 

Table 4  Inter-observer agreement on the external validation set
Category Kappa 95% Confidence interval p-value
Overall 0.65 0.60—0.69  < 0.000
A 0.66 0.47—0.63  < 0.000
B 0.67 0.53—0.70  < 0.000
C 0.73 0.54—0.70  < 0.000
No Fracture 0.92 0.80—0.97  < 0.000
Exclude 0.00 −0.11—0.053 0.490

Table 5  Performance of the algorithm on classifying distal radial fractures
Internal validation External validation
Accuracy: 62% Accuracy: 61%
2R3A 2R3B 2R3C No DRF 2R3A 2R3B 2R3C No DRF

AUC 0,84 0,63 0,75 0,93 0,82 0,56 0,75 0,88
Sensitivity 81% 27% 47% 96% 83% 15% 39% 89%
Specificity 78% 92% 95% 85% 74% 98% 75% 81%

Table 6  Performance of the algorithm on classifying distal radial fractures, after excluding patients without a DRF
Internal validation External validation
Accuracy: 52% Accuracy: 50%
2R3A 2R3B 2R3C 2R3A 2R3B 2R3C

AUC 0,79 0,60 0,73 0,76 0,54 0,73
Sensitivity 81% 27% 47% 83% 15% 39%
Specificity 69% 89% 92% 61% 97% 91%
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2R3B fractures as ‘no fracture’ and 2R3C mainly as 2R3A 
fractures. Identifying where this mix-up comes from is 
difficult through the ‘black box’ of the algorithm, but the 
algorithm clearly underestimates the fractures, rather than 
overestimating them in complexity.

Previously our research group has shown excellent results 
in detecting and localizing DRFs using a CNN algorithm 
with an AUC of 0.93, but similar results were not reproduc-
ible for classifying DRFs [4]. The poor reliability of clas-
sifying DRFs might be caused by the overlapping ulna and 
radius on lateral radiographs which can obstruct important 
features of the fracture, which is not the case in other frac-
tures with good reliability such as hip fractures. The poor to 
moderate inter- and intra-observer reliability of both human 
and AI in classifying DRFs shows the inherent problem of 
the traditional classification systems, whereas looking at 
only extra- vs intra-articular fractures showed better reli-
ability [9]. To overcome this struggle, we could try to find 
a new way of classifying which shows increased reliability.

There are several limitations to this study. First, the CNN 
algorithm was trained using a training set that excluded poor 
image quality, mainly when the distal radius was poorly vis-
ible. By excluding these lesser-than-ideal images, we cre-
ated a selection bias. For the CNN algorithm to be more 
applicable in a real clinical setting, the algorithm should 
also be trained with these suboptimal radiographs. How-
ever, if the distal radius is obstructed in any way, it is dif-
ficult or impossible for either human or AI to diagnose and 
classify a fracture and would require new radiographs to be 
made in clinical practice. Second, the classification systems 
of the DRFs have poor reliability and reproducibility, as 
seen in the interobserver agreement between surgeons when 
classifying the validation sets [13–22]. Using CT scans to 
classify each fracture and then correlating the classifica-
tion to each radiograph probably increases the quality of the 
validation sets and improves the golden standard. In addi-
tion, no further distinction was made between the subgroups 
within the AO/OTA classification. However, this could have 
worsened the interobserver agreement between the surgeons 
[20]. Third, the labeling and annotation process was per-
formed by medical students. However, each radiograph was 
checked by a senior researcher under the supervision of an 
(orthopedic) trauma surgeon to prevent mistakes. Having 
experts label and annotate each radiograph might improve 
the algorithm, but this is very time intensive.

CNN algorithms in orthopedic trauma surgery has 
proven valuable in detecting and classifying fractures from 
plain radiography [32]. Several studies showed its CNN 
algorithm to be at least as capable as clinicians in frac-
ture detection, and classification other than DRFs [1–3, 
5]. In addition, Lindsey et al. showed promising results 
of the clinical applicability of a DRF-detecting algorithm 

CNN performance: external validation

The algorithm's accuracy in classifying DRFs on the exter-
nal validation was 61%. The AUC for type 2R3A was 0.82, 
type 2R3B 0.56, type 2R3C 0.75, and patients with no DRF 
0.88. Table 5 shows the sensitivity and specificity of the 
algorithm. Removing the patients without a DRF did not 
improve results and are further specified in Table 6.

Prediction matrix

Two prediction matrices have been provided to accurately 
portray where the algorithm made mistakes in the classi-
fication of DRFs. See Tables 7 and 8 for the internal and 
external validation prediction matrix, respectively. For 
internal and external validation, most mistakes are made in 
2R3C fractures being classified as 2R3A fractures by the 
algorithm and 2R3B fractures being missed as the algorithm 
predicted no fracture.

Discussion

Classification of fractures should facilitate a practical dis-
cussion between healthcare professionals, not only in the 
treatment of patients but also in research. However, previous 
studies have shown poor inter- and intraobserver reliability 
for DRF classifications. The presented CNN algorithm has 
demonstrated excellent accuracy in classifying type 2R3A 
DRFs and excluding DRFs, and poor to moderate accuracy 
in classifying 2R3B and 2R3C DRFs according to the AO/
OTA system, similar to surgeons (Fig.  2). Looking at the 
confusion matrix (Table 7 and 8), the algorithm classified 

Table  7  Prediction matrix internal validation per patient. Shows the 
correct and incorrect prediction of the algorithm per classification. 
Bold numbers show the number of correctly predicted classifications

Prediction given by algorithm
2R3A 2R3B 2R3C No Fracture

Cla ssification 2R3A 38 2 5 2
2R3B 11 12 2 20
2R3C 19 9 25 0
No Fracture 2 0 0 43

Table 8  Prediction matrix external validation per patient. Shows the 
correct and incorrect prediction of the algorithm per classification. 
Bold numbers show the number of correctly predicted classifications

Prediction given by algorithm
2R3A 2R3B 2R3C No Fracture

Classification 2R3A 40 1 2 5
2R3B 6 4 5 12
2R3C 27 2 23 7
No Fracture 4 0 2 48
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algorithm classified extra- vs intra-articular fractures (2R3A 
vs 2R3B and 2R3C) in 70% and 67% accuracy, on the inter-
nal and external set respectively, but results might have 
been better if trained specifically for that purpose. Unfor-
tunately excluding patients without DRFs did not help to 
improve the accuracy of the algorithm. In future research, 
we could train a different algorithm using just radiographs 
with a DRF to improve accuracy. Allowing the algorithm 
to focus purely on classifying fractures, without the added 
difficulty of determining whether there is a fracture or not, 
might improve accuracy. However, the current algorithm is 
clinically more applicable by allowing radiographs of all 
painful wrists after trauma with a suspected DRF.

by significantly improving the diagnostic accuracy of the 
clinician while being aided by the algorithm [30]. Two 
studies have assessed a CNN algorithm’s performance in 
classifying DRFs, although not using traditional classifi-
cation systems and with mixed results [9, 10]. Min et al., 
who looked at extra- vs intra-articular fractures showed an 
AUC of 0.82, similar to our algorithm in classifying 2R3A 
DRFs and excluding fractures. Toblet et al., looked more 
in detail at fragment displacement, joint involvement and 
multiple fragments. Their AUC ranged from 0.59–0.92, 
more similar to our results. Interestingly, Min et al. reached 
an accuracy of 81% on detecting joint surface involve-
ment, whereas Tobler et al. reached 63.7% accuracy. Our 

Fig. 2  Above a distal radial frac-
ture, underneath the output of the 
algorithm. The algorithm correctly 
classified a 2R3B fracture. The 
white outline (blue and purple 
overlap) shows that the prediction 
of the algorithm (purple) and the 
annotation by the researcher (blue) 
overlap. The algorithm also out-
lines the radius and ulna (orange 
and red respectively)
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source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​o​​n​s​.​​o​
r​g​​/​l​i​c​e​n​s​e​s​/​b​y​/​4​.​0​/.
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