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Abstract

Purpose Convolutional Neural Networks (CNNs) have shown promise in fracture detection, but their ability to improve
surgeons' inconsistent fracture classification remains unstudied. Therefore, our aim was create and (externally) validate the
performance of an open-source CNN algorithm to classify DRFs according to the AO/OTA classification system?

Methods Patients with postero-anterior, lateral and oblique radiographs were included. Radiographs were classified accord-
ing to the AO/OTA-classification and were used to train a CNN algorithm. The algorithm was tested on an internal and
external validation set (two other level 1 trauma centers), with the DRFs classified by three independent surgeons.

Results 659 radiographs were used to train the algorithm. Internal- and external validation sets contained 190 and 188
patients, respectively. Upon internal validation, the CNN had an accuracy of 62% and an area under receiving operating
characteristic curve (AUC) of 0.63—0.93 (type 2R3A 0.84, type 2R3B 0.63, type 2R3C 0.75, and no DRF 0.93). On the
external validation, the algorithm has an accuracy of 61% and an AUC of 0.56—0.88 (type 2R3A 0.82, type 2R3B 0.56, type
2R3C 0.75, and no DRF 0.88).

Conclusion The presented algorithm has demonstrated excellent accuracy in classifying type 2R3A DRFs and excluding
DRFs. However, poor to moderate accuracy is observed in classifying 2R3B and 2R3C DRFs according to the AO/OTA
system, similar to limited surgeons’ inter-observer agreement. These results show that despite previous excellence in fracture
detection, CNN-algorithms struggle with classifying; potentially showing the inherent problems with these classification
systems.
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Introduction classification which showed good results, and a second

study did a more in-detail look at fragment displacement,

Developing a fracture classification tool that does not suf-
fer from inherent surgeon bias is of interest. Convolutional
Neural Network (CNN) performed on the same level as
clinicians in detecting fractures of the distal radius, hand,
ankle, hip, and proximal humerus on plain radiographs
[1-3], as also shown earlier by our research group in this
journal [4]. Multiple studies showed high performance
in classifying proximal humeral, hip, and knee fractures
(Table 1) [3, 5-8]. Two studies have attempted classifying
DRFs, but did not use traditional classification systems [9,
10]. Instead they used an extra-articular vs intra-articular

Extended author information available on the last page of the article

Published online: 21 July 2025

joint involvement and multiple fragments, with less promis-
ing results (Table 2).

Although distal radius fractures (DRFs) are one of the
most common fractures [11, 12], not one of the 20 clas-
sification systems has been proven reliable in terms of
inter-observer agreement [13]. Several studies have shown
that the reliability of the most common classification sys-
tems, such as Frykman, Older, Fernandez, and AO/OTA,
consistently varies from poor to good when evaluated
(Table 3) [13-22]. Studies on the most used AO/OTA clas-
sification system, showed an undesired wide spectrum of
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Table 1 Results of studies found
in literature determining the
performance of x-ray-based

Study
system

Classification

Interobserver reliability
(range per classification
type if given by study)

Intraobserver reliability ~ Radio-
(range per classification ~ graphs
type if given by study) (n)

CNN algorithms in classifying

non-distal radius fractures. The Andersen etal. 1996 AO/OTA

sensitivity, specificity, accuracy Frykman
and AUC were used to describe Krederetal. 1996 AO/OTA
the performance. * Data not Macdermid et al. AO/OTA
available 2001 Frykman
Older
Jin et al. 2007 AO/OTA
Frykman
Ploegmakers etal. ~ AO/OTA
2007 Frykman
Older
Fernandez
Plant et al. 2015 AO/OTA
van Buijtenen et al. AO/OTA
2015
Jayakumar et al. AO/OTA
2016
Waever et al. 2018  AO/OTA
Frykman
Older

0.64 0.57-0.70 55
0.34-0.36 0.40-0.61

0.68 0.67-0.86 30
0.38 * 128
0.35 *

0.73 *

0.28-0.71 0.45-0.57 43
0.24-0.51 0.40-0.63

* 0.52 5
* 0.26

* 0.27

* 0.42

0.39-0.66 0.53-0.75 *
0.32-0.50 0.54-0.87 54
0.66-0.74 0.28-0.74 96
0.45 0.58-0.87 *
0.41 0.46-0.63

0.10 0.10-0.21

Table 2 Results of studies found in literature determining the per-
formance of x-ray-based CNN algorithms in classifying distal radius
fractures. The sensitivity, specificity, accuracy and AUC were used to
describe the performance

Study Classification  Sensi- Speci-  Accu- AUC

system tivity ficity racy (95%CI)
(95%CI)  (95%CI) (95%CI)

Tobler Fragment * * 59.7% Set A:

etal,, displacement: 63.7% Set B

2021  Joint 782%  0.59:

involvement: 0.92

Multiple 0.62:

fragments: 0.90

0.84:

0.91

Min Extra-articular  83% 72% 81% 0.82
etal.,, vsintra-articu-
2023  lar fractures

inter- and intra-observer reliability outcomes with kappa
scores between 0.28-0.74 and 0.28-0.87 respectively, even
for the main fracture types A, B and C. [14-22].

Fracture classification should facilitate effective discus-
sion about fracture characteristics and desired treatment
options between healthcare professionals regarding radio-
graphic findings. Moreover, it plays an essential role in
research as it enables, 1) a standardized method to describe
fractures in research, 2) a consistent method of recording in
the electronic patient system, and 3) a comparison of studies
using the same classifications. Furthermore, a reliable frac-
ture classification system can provide insight into clinical
decision-making [23]. For these reasons, improving intra-
and interobserver reliability and minimizing variability is
vital.
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The aim of this study is to (externally) validate the per-
formance of an ‘open source’ CNN to classify DRFs in pos-
tero-anterior (PA) and lateral radiographs according to the
AO/OTA classification system.

Patients/methods
Study design

In this diagnostic imaging study an open-source CNN algo-
rithm to classify DRFs according to the AO/OTA classifi-
cation system was developed. For the training of the CNN
algorithm, patients with a suspected DRF presenting to the
Emergency Room of the Flinders Medical Centre (FMC),
a level-1 trauma center, between the years 2016 and 2020,
with PA and lateral radiographs (and oblique when present)
were retrospectively included. Exclusion criteria included
pathology other than DRF (not including concomitant ulnar
styloid fractures), presence of epiphyseal growth plates,
and poor image quality obstructing the distal radius (e.g.,
artifacts, noise, objects, under- or overexposure and casts
that severely decrease image quality). Ethical approval was
granted by the ethics committee (CALHN 13991). There are
no conflicts of interest. The study was performed in accor-
dance with the Clinical AI Research (CAIR) checklist, a
guideline for Al research [24].
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Table 3 Range of kappa values of
studies determining the intra-and
interobserver reliability in the

Study
system

Classification

Interobserver reliability
(range per classification
type if given by study)

Intraobserver reliability ~ Radio-
(range per classification ~ graphs
type if given by study) (n)

literature comparing AO/OTA

(types A, B, C) with Frykman, Andersen et al. 1996 AO/OTA

Fernandez and Older classifica- Frykman
tion system of DRF on plain Krederetal. 1996  AO/OTA
radiographs. * Data not available ~ Macdermid et al. AO/OTA
2001 Frykman
Older
Jin et al. 2007 AO/OTA
Frykman
Ploegmakers etal. ~ AO/OTA
2007 Frykman
Older
Fernandez
Plant et al. 2015 AO/OTA
van Buijtenen et al. AO/OTA
2015
Jayakumar et al. AO/OTA
2016
Waever et al. 2018  AO/OTA
Frykman
Older

0.64 0.57-0.70 55
0.34-0.36 0.40-0.61

0.68 0.67-0.86 30
0.38 * 128
0.35 *

0.73 *

0.28-0.71 0.45-0.57 43
0.24-0.51 0.40-0.63

* 0.52 5
* 0.26

* 0.27

* 0.42

0.39-0.66 0.53-0.75 *
0.32-0.50 0.54-0.87 54
0.66-0.74 0.28-0.74 96
0.45 0.58-0.87 *
0.41 0.46-0.63

0.10 0.10-0.21

Training dataset, labeling, and annotations

The picture archiving and communication system (PACS)
was searched for eligible patients with ICD-9 diagnostic
codes, i.e.,"fracture"and “radius”. The radiographs were
exported from PACS as Digital Imaging and Communica-
tions in Medicine (DICOM) files and subsequently ano-
nymized with free open-source software DICOM Cleaner
[PixelMed Publishing, LLC]. The DICOM files were then
uploaded to an online computer vision training data plat-
form Labelbox [25]. These images were not pre-processed.
The radiographs were labeled to the presence or absence of
a DRF and type of fracture according to the AO/OTA classi-
fication (2R3 A for extra-articular fractures, 2R3B for partial
articular fractures, 2R3C for complete articular fractures).
After the image was labeled, the radius, ulna, and fracture
were annotated (Fig. 1). The fracture was annotated with
a rectangle and a polygon tool encompassing the fracture.
Two independent reviewers performed the inclusion and
exclusion and the labeling and annotations. All radiographs
were checked by a senior researcher (KON, JP), under the
supervision of an (orthopedic) trauma surgeon (F1J, JD).

Development of the algorithm

CNNs are extensively used in visual imagery analysis.
These are complex multilayered networks comprised of
artificial neurons [26]. The deep learning model evaluated in
this study is a state-of-the-art object detection method Mask
R-CNN based on Detectron2 [27]. The model consists of
a backbone ResNet architecture with 50 layers and Region

Proposal Network (RPN) module for bounding box pro-
posals generation. First, we initialize the model with Ima-
geNet pre-trained parameters. Our experiment sets the batch
size to 8, and the base learning rate is initialized at 0.02.
This process iterates for 6250 iterations. We repeated this
experiment 5 times. All experiments are implemented with
PyTorch framework on one Nvidia V100 Graphics Process-
ing Unit (GPU). The code has been made publicly available
for further training or external validation on GitHub (https:/
/github.com/AIML-MED/DRF _Classification Public).

Internal validation

To evaluate performance of the algorithm, an internal vali-
dation was performed. Further patients from the FMC, the
same hospital from which the training dataset was gathered,
were collected in the same way as described above. Three
(orthopedic) trauma surgeons (FIJ, MW, JC) reassessed
all radiographs and achieved consensus on the presence or
absence of a DRF and the fracture type according to the AO/
OTA classification [28]. Any continued disagreements about
the classification were solved during a consensus meeting.

External validation

To test the generalizability of the algorithm, external vali-
dation was performed, meaning that the algorithm is tested
with patients from external hospitals, in this case, hospitals
from the other side of the world. Patients from the Univer-
sity Medical Center Groningen (UMCG) and the Erasmus
University Medical Center (EMC), both level-1 trauma
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Fig. 1 Examples of the labeling and annotation process of a type A (first row), type B (second row) and type C (third row) fracture using Labelbox
software. The radius (red), ulna (orange), fractured area (yellow box) and fracture zone (yellow polygon) are indicated with different colors

centers in the Netherlands, presented at the Emergency
Room with a suspected DRF between 2015 and 2020 were
collected. The same three (orthopedic) trauma surgeons
(FIJ, MW, JC) independently reassessed all radiographs for
external validation according to the AO/OTA classification
until consensus was reached. The surgeons’ inter-observer
agreement of the external validation patients was calculated.

@ Springer

Statistical analysis

The performance of the algorithm is presented in several
metrics. First, we assessed the algorithm's accuracy by cal-
culating the percentage of rightly classified DRF among all
cases. Then the AUC was calculated for each classification
by plotting the true positive rate against the false positive
rate (1-specificity). The AUC indicates how adequately
the algorithm can distinguish between two groups. Lastly,
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Table 4 Inter-observer agreement on the external validation set

Category Kappa 95% Confidence interval p-value
Overall 0.65 0.60—0.69 <0.000
A 0.66 0.47—0.63 <0.000
B 0.67 0.53—0.70 <0.000
C 0.73 0.54—0.70 <0.000
No Fracture 0.92 0.80—0.97 <0.000
Exclude 0.00 —0.11—0.053 0.490

the sensitivity and specificity for classifying each type of
fracture are calculated. The sensitivity and specificity are
the proportion of true positives and true negatives that the
CNN model classifies as such. Statistical analyses were per-
formed using SPSS version 26.0. The internal and external
validation sets are seen as two different outcomes, so results
are presented for both sets individually.

To present information regarding the inter-observer
agreement, a Fleiss'kappa analysis was performed, which
will be presented with a 95% confidence interval.

Results
Dataset

A total of 659 wrist radiographs from between 2016 and
2020 were included in the Flinders Medical Center record
system to train the algorithm. Because of the anonymiza-
tion process, it was not possible to track down the patient
characteristics. A total of 188 radiographs were labeled as
containing a 2R3 A classified DRF, 65 radiographs as 2R3B,
62 as 2R3C, and 344 did not have a fracture.

The internal validation data set consisted of 195 patients
from whom 498 radiographs (PA, lateral, and oblique when
present) were available. 5 patients were excluded due to
poor image quality (as decided by the 3 (orthopedic) trauma
surgeons), making the final set 190 patients. The internal

Table 5 Performance of the algorithm on classifying distal radial fractures

validation contained 47 patients with a 2R3A fracture, 45
2R3B, 53 2R3C and 45 without a fracture.

The external validation consisted of 200 patients, of
which 12 patients were excluded due to poor image qual-
ity, making the final set 188 patients. The external valida-
tion data set contained 48 patients with a 2R3A fracture,
27 2R3B, 59 2R3C and 54 without a fracture. It consisted
of a total of 376 radiographs (PA and lateral). The overall
number of images in the validation and external validation
data sets are based on comparative studies on the matter [1,
29, 30].

Gold standard: surgeon interobserver agreement

Three (orthopedic) trauma surgeons independently clas-
sified each fracture in the internal and external validation
sets. Using the results from the external validation, an inter-
observer agreement was calculated. The classifications of
each surgeon before any consensus meeting were used,
including the option ‘exclude’ in case of perceived bad
image quality. The overall inter-observer agreement was
0.65 (95%CI 0.60-0.69), often referred to as substantial
agreement [31]. See Table 4 for the inter-observer agree-
ment of each individual classification.

CNN performance: internal validation

The algorithm's accuracy in classifying DRFs on the inter-
nal validation was 62%. The AUC for type 2R3 A was 0.84,
type 2R3B 0.63, type 2R3C 0.75, and patients with no DRF
0.93. Table 5 demonstrates the sensitivity and specificity of
the algorithm. Removing the patients without a DRF did not
improve results and are further specified in Table 6.

Internal validation

External validation

Accuracy: 62%

Accuracy: 61%

2R34 2R3B 2R3C No DRF 2R34 2R3B 2R3C No DRF

AUC 0,84 0,63 0,75 0,93 0,82 0,56 0,75 0,88
Sensitivity 81% 27% 47% 96% 83% 15% 39% 89%
Specificity 78% 92% 95% 85% 74% 98% 75% 81%
Table 6 Performance of the algorithm on classifying distal radial fractures, after excluding patients without a DRF

Internal validation External validation

Accuracy: 52% Accuracy: 50%

2R34 2R3B 2R3C 2R34 2R3B 2R3C
AUC 0,79 0,60 0,73 0,76 0,54 0,73
Sensitivity 81% 27% 47% 83% 15% 39%
Specificity 69% 89% 92% 61% 97% 91%

@ Springer
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Table 7 Prediction matrix internal validation per patient. Shows the
correct and incorrect prediction of the algorithm per classification.
Bold numbers show the number of correctly predicted classifications

Prediction given by algorithm

2R3A 2R3B 2R3C No Fracture
Cla ssification 2R3A 38 2 5 2
2R3B 11 12 2 20
2R3C 19 9 25 0
No Fracture 2 0 0 43

Table 8 Prediction matrix external validation per patient. Shows the
correct and incorrect prediction of the algorithm per classification.
Bold numbers show the number of correctly predicted classifications
Prediction given by algorithm
2R3A 2R3B 2R3C No Fracture

Classification 2R3A 40 1 2 5
2R3B 6 4 5 12
2R3C 27 2 23 7
No Fracture 4 0 2 48

CNN performance: external validation

The algorithm's accuracy in classifying DRFs on the exter-
nal validation was 61%. The AUC for type 2R3A was 0.82,
type 2R3B 0.56, type 2R3C 0.75, and patients with no DRF
0.88. Table 5 shows the sensitivity and specificity of the
algorithm. Removing the patients without a DRF did not
improve results and are further specified in Table 6.

Prediction matrix

Two prediction matrices have been provided to accurately
portray where the algorithm made mistakes in the classi-
fication of DRFs. See Tables 7 and 8 for the internal and
external validation prediction matrix, respectively. For
internal and external validation, most mistakes are made in
2R3C fractures being classified as 2R3A fractures by the
algorithm and 2R3B fractures being missed as the algorithm
predicted no fracture.

Discussion

Classification of fractures should facilitate a practical dis-
cussion between healthcare professionals, not only in the
treatment of patients but also in research. However, previous
studies have shown poor inter- and intraobserver reliability
for DREF classifications. The presented CNN algorithm has
demonstrated excellent accuracy in classifying type 2R3A
DRFs and excluding DRFs, and poor to moderate accuracy
in classifying 2R3B and 2R3C DRFs according to the AO/
OTA system, similar to surgeons (Fig. 2). Looking at the
confusion matrix (Table 7 and 8), the algorithm classified
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2R3B fractures as ‘no fracture’ and 2R3C mainly as 2R3A
fractures. Identifying where this mix-up comes from is
difficult through the ‘black box’ of the algorithm, but the
algorithm clearly underestimates the fractures, rather than
overestimating them in complexity.

Previously our research group has shown excellent results
in detecting and localizing DRFs using a CNN algorithm
with an AUC of 0.93, but similar results were not reproduc-
ible for classifying DRFs [4]. The poor reliability of clas-
sifying DRFs might be caused by the overlapping ulna and
radius on lateral radiographs which can obstruct important
features of the fracture, which is not the case in other frac-
tures with good reliability such as hip fractures. The poor to
moderate inter- and intra-observer reliability of both human
and Al in classifying DRFs shows the inherent problem of
the traditional classification systems, whereas looking at
only extra- vs intra-articular fractures showed better reli-
ability [9]. To overcome this struggle, we could try to find
a new way of classifying which shows increased reliability.

There are several limitations to this study. First, the CNN
algorithm was trained using a training set that excluded poor
image quality, mainly when the distal radius was poorly vis-
ible. By excluding these lesser-than-ideal images, we cre-
ated a selection bias. For the CNN algorithm to be more
applicable in a real clinical setting, the algorithm should
also be trained with these suboptimal radiographs. How-
ever, if the distal radius is obstructed in any way, it is dif-
ficult or impossible for either human or Al to diagnose and
classify a fracture and would require new radiographs to be
made in clinical practice. Second, the classification systems
of the DRFs have poor reliability and reproducibility, as
seen in the interobserver agreement between surgeons when
classifying the validation sets [13-22]. Using CT scans to
classify each fracture and then correlating the classifica-
tion to each radiograph probably increases the quality of the
validation sets and improves the golden standard. In addi-
tion, no further distinction was made between the subgroups
within the AO/OTA classification. However, this could have
worsened the interobserver agreement between the surgeons
[20]. Third, the labeling and annotation process was per-
formed by medical students. However, each radiograph was
checked by a senior researcher under the supervision of an
(orthopedic) trauma surgeon to prevent mistakes. Having
experts label and annotate each radiograph might improve
the algorithm, but this is very time intensive.

CNN algorithms in orthopedic trauma surgery has
proven valuable in detecting and classifying fractures from
plain radiography [32]. Several studies showed its CNN
algorithm to be at least as capable as clinicians in frac-
ture detection, and classification other than DRFs [1-3,
5]. In addition, Lindsey et al. showed promising results
of the clinical applicability of a DRF-detecting algorithm



Open-source convolutional neural network to classify distal radial fractures according to the AO/OTA...

Page 7of 10 261

Fig.2 Above a distal radial frac-
ture, underneath the output of the
algorithm. The algorithm correctly
classified a 2R3B fracture. The
white outline (blue and purple
overlap) shows that the prediction
of the algorithm (purple) and the
annotation by the researcher (blue)
overlap. The algorithm also out-
lines the radius and ulna (orange
and red respectively)

by significantly improving the diagnostic accuracy of the
clinician while being aided by the algorithm [30]. Two
studies have assessed a CNN algorithm’s performance in
classifying DRFs, although not using traditional classifi-
cation systems and with mixed results [9, 10]. Min et al.,
who looked at extra- vs intra-articular fractures showed an
AUC of 0.82, similar to our algorithm in classifying 2R3A
DRFs and excluding fractures. Toblet et al., looked more
in detail at fragment displacement, joint involvement and
multiple fragments. Their AUC ranged from 0.59-0.92,
more similar to our results. Interestingly, Min et al. reached
an accuracy of 81% on detecting joint surface involve-
ment, whereas Tobler et al. reached 63.7% accuracy. Our

..

-

algorithm classified extra- vs intra-articular fractures (2R3 A
vs 2R3B and 2R3C) in 70% and 67% accuracy, on the inter-
nal and external set respectively, but results might have
been better if trained specifically for that purpose. Unfor-
tunately excluding patients without DRFs did not help to
improve the accuracy of the algorithm. In future research,
we could train a different algorithm using just radiographs
with a DRF to improve accuracy. Allowing the algorithm
to focus purely on classifying fractures, without the added
difficulty of determining whether there is a fracture or not,
might improve accuracy. However, the current algorithm is
clinically more applicable by allowing radiographs of all
painful wrists after trauma with a suspected DRF.

@ Springer
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Our algorithm was very pragmatic with chances of high
clinical performance, as it showed only slightly decreased
performance on patients on the other side of the world. The
created algorithm is made freely available to the public,
allowing other researchers to further improve and test the
algorithm. This provides insights into both the algorithm's
practical applications and the impact of scaling patient num-
bers from different hospitals on its accuracy. Data has yet to
be available on this. The algorithm can also show where it
believes the fracture is, and outline the radius and ulna. This
will make verifying the algorithm easy. If the algorithms
accuracy increases, further research can be done to add AO/
OTA classification subtypes, making the algorithm appli-
cable in areas where more detail is wanted.

In conclusion, the algorithm has demonstrated moder-
ate accuracy in classifying DRFs according to the AO/OTA
system, similar to surgeons. These results show that despite
previous excellence in fracture detection, CNN-algorithms
struggle with classifying DRFs; potentially showing the
inherent problems with these classification systems. Other
centers are able to use this algorithm by training it or per-
forming an external validation themselves.
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