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ABSTRACT

Objective: Analyzing population trends of bone shape variation can provide valuable insights into growth pro-
cesses. This review aims to overview state-of-the-art spatiotemporal statistical shape modeling techniques,
emphasizing their application to 3D skeletal structures during healthy growth.

Methods: We searched PubMed and Scopus for articles on statistical shape modeling using a pediatric spatio-
temporal dataset of 3D healthy bone models. Dataset characteristics and details on the shape models' develop-
ment, analyses, and potential clinical use were extracted.

Results: Fourteen studies were found eligible, modeling one or multiple lower limb bones, the mandible, the skull,
and vertebrae. The majority applied Principal Component Analysis on point distribution models to create a
statistical shape model. Shape variation was analyzed based on shape modes, representing a specific shape
change as a part of the overall variance. Unscaled models resulted in a more compact statistical shape model than
scaled models. The latter represented more subtle shape variations due to the absence of size differences between
the bone models. Four studies reported a significant correlation between the first shape mode and age, indicating
a relationship between that type of shape variation and growth. Three studies reconstructed 3D models using
prediction features of statistical shape modeling. Measuring difference between predicted and actual anatomy
resulted in Root Mean Squared Errors below 3 mm.

Conclusion: Spatiotemporal statistical shape modeling provides insight into modes of shape variation during
growth. Such a model can be used to find predictive factors, like age or sex, and deploy these characteristics to
predict someone's bone geometry.

1. Introduction

variability within a dataset of structures, like bones (Cootes et al., 1992).
Given a particular shape (such as a radius in Fig. 1), Principal Compo-

Growth is the dominant cause of bone change during childhood.
Clinicians cannot distinguish healthy from pathological deviations
without insight into regular anatomical changes during growth. In or-
thopedics, average growth of long bones is often captured in bone length
measurements and closure of growth plates. These measurements are
usually based on 2D imaging, while bones have three-dimensional (3D)
shapes. Statistical shape models (SSMs), representing the population's
anatomy in 3D have proven useful in helping understand such normal
variations in anatomy (Ambellan et al., 2019).

SSMs are a mathematical representation of common shape

nent Analysis (PCA) provides insight into a dataset's different types of
shape variation, known as shape modes or principal components (PC).
Each mode corresponds to a particular kind of variation and provides an
axis along which shapes vary the most from the dataset's mean shape.
Using a cross-sectional dataset of pediatric bones at different ages,
certain shape variations might be linked to age and, thus growth. These
models are called spatiotemporal SSMs, as shapes at different time
points are analyzed. A shape variation related to an increase in age can
be explained as the average growth. By incorporating more de-
mographic characteristics, such as sex or ethnic origin, the mean growth
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Fig. 1. The first two shape modes for a radius shape model. Each row shows the variation within a principal component between -3¢ and + 3o. In this example, PC1
captures a difference in overall size. PC2 represents variation in angulation in the coronal plane.
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trajectory for specific groups can be calculated and visualized in 3D.

An SSM can help understand and recognize normal variation over
time in various populations. However, while this method captures a
longitudinal, cross-sectional variation, applying this to an individual
level is also possible. For example, given the 3D model of a bone at the
age of 10 years, the SSM can predict the shape at 14 years by changing
the variation described by the change in age and keeping other varia-
tions, describing person-specific characteristics, the same. In this way, a
person-specific prediction of the anatomy can be made by applying an
average effect. This prediction can help to identify pathological changes
in practice. Such longitudinal predictions of skeletal anatomy can be
valuable in tracking bone growth and supporting clinicians in diag-
nosing and treating bone abnormalities.

This scoping review provides an overview of the techniques and
applications for spatiotemporal statistical shape modeling of skeletal
structures during growth. We report state-of-the-art methods for con-
structing an SSM of developing bone and resulting statistical analyses
focusing on the temporal aspect. The applications of an SSM are dis-
cussed along with the reported accuracy scores to investigate clinical
feasibility.

2. Methods

We searched the PubMed and Scopus databases for studies in English
until 20 February 2024. Searches were performed using the keywords
‘statistical shape model’, ‘spatiotemporal’ and ‘bone’ or associated ter-
minology (see Table 1). We looked for additional relevant studies by
snowballing, following references cited in the already identified studies,
and added them to the synthesis.

The first author performed screening of title and abstract. Studies
meeting the following criteria were included:

a. Involves the application of statistical shape modeling,
b. on a dataset comprising 3D skeletal structures,
c. in a pediatric population involving growth.

Articles were systematically searched for study characteristics such
as anatomical region, dataset size and goal of the SSM. The model type,
parametrization and alignment methods and shape analyses used to
create the SSMs were extracted along with the reported variation
explained by the first PCs. Outcomes regarding the application accuracy
of the SSMs were collected, including prediction and correlation ana-
lyses if performed.

3. Results
3.1. Search results & study characteristics

Fourteen studies were identified for this review and included for data
extraction (Table 2). Anatomical structures modeled in these studies
included one or multiple lower limb bones, the mandible, the skull, and
vertebrae. Most studies used a cross-sectional dataset of CT scans as a
source for the 3D surface models (Carman et al., 2022; Coquerelle et al.,
2011; Heutinck et al., 2021; Klop et al., 2021; Klop et al., 2024; Li et al.,
2015; Li et al., 2018; McKinsey et al., 2023; Mercan et al., 2020;

Table 1
Search terms for literature search.

AND AND

Statistical shape model Spatiotemporal Bone

SSM Longitudinal Skeletal
Shape model Development
Shape analysis Growth
Morphology Pediatric
Variation
Change
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Table 2
Characteristics and goal of included statistical shape models.

Study Source  Bone Dataset Subjects Aim of the study
type & ()
age
range
Carman CT Pelvis Ccs Pelvis: Understand
et al., Femur 4-18y 331 shape
2022 Tibia/ Femur: development
Fibula 663 during growth.
Tib/fib: Predict new
658 geometry using
subject
characteristics.
Coquerelle CT Mandible CS 159 Differentiate
etal, 0-25y between groups
2011 over time.
Heutinck CT Head CS 65 Understand
et al., 0-2y shape
2021 development and
assess surgical
outcome.
Klop et al., CT Mandible Ccs 874 Understand
2021 1-12y shape
development
during growth.
Klop et al., CT Mandible Ccs 678 Understand
2024 0-22y shape
development
during growth.
Li et al., CT Skull CS 56 Predict new
2015 0-3y geometry using
subject
characteristics.
Li et al., CT Vertebrae (& 30 Assess
2018 3-10y correlation
between shape
and age.
McKinsey CT Femur Ccs 96 Predict new
etal, 0-3y geometry using
2023 subject
characteristics.
Mercan CT Skull Ccs Healthy: Understand
etal, 0-6 m 117 shape
2020 Diseased: development
81 during growth
and differences
between groups.
O'Sullivan CT Skull Ccs 178 Create a
et al., 04y representative
2021 bone model.
O'Sullivan CT Mandible Cs 242 Assess
et al., 0-4y correlation
2022 between shape
and age.
Peters CT Spine Cs 91 Assess
et al., Vertebrae 1-19y correlation
2017 between shape/
position and age.
Sahlstedt, CT Proximal Cs 61 Create a
2018 femur 7-17y representative
bone model.
Shi et al., MRI Lower Ccs Limb: 56 Create a
2022 limb 6-19y Pelvis: 29 representative
bone model.

Abbreviations: CS, cross-sectional; CT, Computed Tomography; FU, follow-up; L,
longitudinal; m, month; MRI, Magnetic Resonance Imaging; y, year

O'Sullivan et al., 2021; O'Sullivan et al., 2022; Peters et al., 2017;
Sahlstedt, 2018). Only one study used a cross-sectional dataset of MRI
scans (Shi et al., 2022). Three studies derived their bone models from
post-mortem body CT scans (Carman et al., 2022; Klop et al., 2024;
McKinsey et al., 2023). One study utilized scans of cadaveric mandibles
(Klop et al., 2021), while the other studies sourced data from patient
scans taken for clinical or research purposes (Coquerelle et al., 2011;
Heutinck et al., 2021; Li et al., 2015; Li et al., 2018; Mercan et al., 2020;
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O'Sullivan et al., 2021; O'Sullivan et al., 2022; Peters et al., 2017;
Sahlstedt, 2018; Shi et al., 2022). Age was the variable temporal factor
in all included articles, varying between 0 and 2 months and 0 to 25
years. All studies aimed to generate a representative bone model for the
temporal range covered in their dataset. The authors of six studies tested
for correlation between shape-related variables and age (Coquerelle
et al., 2011; Heutinck et al., 2021; Klop et al., 2021; Klop et al., 2024;
Mercan et al., 2020; O'Sullivan et al., 2022). In seven articles, the pre-
dictive capability of the SSM was evaluated (Carman et al., 2022; Li
et al., 2015; McKinsey et al., 2023; O'Sullivan et al., 2021; O'Sullivan
et al., 2022; Sahlstedt, 2018; Shi et al., 2022). Two other studies focused
on the ability to distinguish two groups based on shape data derived
from the SSM (Coquerelle et al., 2011; Mercan et al., 2020).

3.2. Model type & parametrization

In most studies, a Point Distribution Model (PDM) was used to
represent the model surfaces as data points in a three-dimensional

Table 3
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coordinate system (Table 3) (Carman et al., 2022; Coquerelle et al.,
2011; Klop et al., 2021; Klop et al., 2024; Li et al., 2015; Li et al., 2018;
McKinsey et al., 2023; Mercan et al., 2020; O'Sullivan et al., 2021;
O'Sullivan et al., 2022; Peters et al., 2017; Sahlstedt, 2018; Shi et al.,
2022). A point cloud is created using anatomical landmarks, non-
anatomical semi-landmarks, or evenly distributed surface nodes. Semi-
landmarks are points that are positioned along curves or surfaces be-
tween traditional landmarks. Samples were fitted to a template to
consistently sample data points among all subjects, known as parame-
trization (Fig. 2). Usually, the 3D model of the dataset’ mean or a sample
close to the mean is used as a template, along with its surface repre-
sentation by landmarks or evenly distributed surface points. Several
techniques were applied to fit the PDMs to the template, including
Radial Basis Functions, Thin-Plate Splines, Iterative Closest Point (ICP),
and Coherent Point Drift (CPD) algorithms, as shown in Table 3. Four
studies reported fitting errors to quantify the anatomical and/or geo-
metric accuracy of the template fitting. Template-to-target registration
using ICP and CPD algorithms resulted in average geometrical distances

Techniques used to develop the Statistical Shape Models and resulting Principal Component scores.

Study Model type Parametrization Alignment Shape Principal Components
analysis # first principal components | % variation
explained
Carman PDM Template fitting Rigid Standard PCA Standard PCA pelvis: 1 PC | 92 %
2022 - Surface nodes - Radial basis function - Centre of mass Procrustes PCA Standard PCA femur: 1 PC | 98 %
Scaled PCA Standard PCA tibia/fibula: 1 PC | 97 %
Procrustes PCA pelvis: 41 PCs | 90 %
Procrustes PCA femur: 60 PCs | 90 %
Procrustes PCA tibia/fibula: 39 PCs | 90 %
Scaled PCA pelvis: 9 PCs | 90 %
Scaled PCA femur: 36 PCs | 90 %
Scaled PCA tibia/fibula: 15 PCs | 90 %
Coquerelle  PDM Template fitting GPA PCA 1PC|62%
2011 - Anatomical landmarks - Thin-plate spline
- Semi-landmarks
Heutinck Deformation model Deformation NR PCA 1PC|67 %
2021
Klop PDM Template fitting GPA PCA 1PC|78%
2021 - Semi-landmarks - ICP & CPD - Unscaled
Klop PDM Template fitting Procrustes PCA Unscaled: 1 PC | 92 %
2024 - Surface nodes - Rigid & non-rigid ICP - Unscaled Unscaled: 3 PCs | 95 %
- Scaled Scaled: 24 PCs | 95 %
Li PDM Landmark registration Rigid PCA NR
2015 - Anatomical landmarks - Translation
- Semi-landmarks - Rotation
Li PDM Curvature-based approach Rigid PCA NR
2018 - Discrete points from - Anatomical coordinate
curves system
McKinsey PDM Template fitting Procrustes PCA 1PC|99%
2023 - Surface nodes - Radial basis function
- Anatomical landmarks
Mercan PDM Template fitting GPA PCA Healthy: 1 PC | 35 %
2020 - Anatomical landmarks - Thin plate splines - Unscaled SCS: 1 PC | 30 %
- Semi-landmarks 20 PCs | 90 %
O'Sullivan PDM Template fitting Procrustes PCA 1PC|38%
2021 - Anatomical landmarks - Non-rigid ICP 10 PCs | 90 %
O'Sullivan PDM Template fitting Rigid PCA 1PC |90 %
2022 - Anatomical landmarks - Non-rigid ICP - Landmarks 22 PCs | 99 %
- Semi-landmarks - Unscaled
Peters PDM Template fitting GPA Fitted equations
2017 - Anatomical landmarks - ICP - Scaled - Scale
maintained
Sahlstedt PDM Template fitting GPA PCA 1PC|33%
2018 - Surface nodes - ICP and nonrigid - Scaled 23 PCs | 95 %
registration
Shi PDM Template fitting Rigid PCA Femur: 11 PCs | 75 %
2022 - Surface nodes - Radial basis function - ICP Pelvis: 9 PCs | 80 %
- Scaled Tibia: 9 PCs | 83 %

Fibula: 5 PCs | 63 %
Patella: 4 PCs | 43 %

Abbreviations: CPD, Coherent Point Drift; GPA, Generalized Procrustes Analysis; ICP, Iterative Closest Point; NR, Not Reported; PC, Principal Component; PCA,
Principal Component Analysis; PDM, Point Distribution Model.
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Fig. 2. Visualization of the development of an SSM, with the radius as example. Shape correspondence among the dataset is established using template fitting of the
Point Distribution Models (top). After alignment, PCA is applied to generate the SSM (bottom).

of 0.05 mm and submillimeter differences between the actual and ex-
pected landmark positions (Klop et al., 2021). The MeshMonk algo-
rithm, a combination of rigid and non-rigid registration, resulted in a
similar geometric accuracy of 0.05 mm. Anatomical validation showed a
mean distance of 1.1 mm between the landmarks assigned by MeshMonk
and by the observer (Klop et al., 2024). Sahlstedt (2018) reported mean
distances between the registered volume meshes and the actual meshes
of <0.2 mm and mean maximum distances in the order of 2 mm
(Sahlstedt, 2018). Geometric fitting errors were low for all bones in
Carman et al. (2022) after template fitting using radial basis functions
(pelvis: 0.35 + 0.08 mm, femur: 0.20 + 0.04 mm, tibia/fibula: 0.16 +
0.04 mm) (Carman et al., 2022).

The two studies by Li et al. (2015, 2018) used different model types
to parametrize the samples. In the first study, they identified landmarks
across the surface and aligned them using rigid registration to a pre-set
origin and orientation (Li et al., 2015). Their later study used a
curvature-based approach to discretize surfaces into geometric curves
and then align discrete points (Li et al., 2018). Heutinck et al. (2021)
applied a deformation model using DEFORMETRICA, a framework to
determine the population's average shape and its variations (Heutinck
et al., 2021). The dataset is represented by a template and deformation

vectors that can be used to warp the template to a subject's shape
complex (Durrleman et al., 2014).

Summarized, the primary approach for this step in SSM development
was the construction of a PDM with landmarks or surface nodes.
Parametrization with template fitting was the most common, resulting
in negligible registration errors.

3.3. Analysis of shape variation

Peters et al. (2017) analyzed shape variation of the vertebrae in
relation to age by fitting equations to estimate landmark positions and
rotation angles (Peters et al., 2017). Of all shape equations, 72 % dis-
played a significant age-dependent trend. All other studies used PCA to
assess shape variation across the population (Table 3).

Before conducting PCA, all samples must be aligned to achieve point
correspondence as facilitated by the earlier parametrization step. In six
studies, the differences in size were eliminated by scaling all samples to
the mean size (volume) during the alignment process with Procrustes
analysis (Coquerelle et al., 2011; McKinsey et al., 2023; O'Sullivan et al.,
2021; Peters et al., 2017; Sahlstedt, 2018; Shi et al., 2022). This removed
a large proportion of variation, especially in datasets involving growth,
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and revealed more subtle changes in the primary PCs. In six other
studies, the scaling difference in samples across the temporal range was
retained by applying rigid registration or Procrustes without scaling
(Carman et al., 2022; Klop et al., 2021; Li et al., 2015; Li et al., 2018;
Mercan et al., 2020; O'Sullivan et al., 2022). Incorporating size variation
into the SSM is needed for accurately predicting new geometries,
including bone size. In the second study of Klop et al. (2024) and the
study of Carman et al. (2022) SSMs with and without scaling in the
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alignment or PCA were developed and compared (Carman et al., 2022;
Klop et al., 2024). The first PC of the unscaled mandible SSM by Klop
et al. (2024) explained 92 % of all variation, whereas the first PC of the
scaled model accounted for only 67 % of the variation. For the scaled
model, more PCs were required to cover 95 % of the variation (24 PCs
compared to 3 for the unscaled model), making it a less compact model.
The same trend was seen in Carman et al. (2022). Only one PC was
needed to explain >90 % of the variation for the unscaled bone models.
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Fig. 3. Visualization of the effect of scaling using synthetic data. Shape variation represented by the first shape at the left, and compactness plots at the right for (A)

unscaled models and (B) scaled models.
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The SSMs constructed using Procrustes PCA, thus without size differ-
ences, used at least 40 PCs to describe 90 % of shape variation but
revealed more detailed shape changes. These findings were consistent
with the other studies: unscaled models were generally more compact
than scaled SSMs (Fig. 3). The applied pipelines to develop an SSM,
along with reported proportions of variation explained by the first PC(s),
can be found in Table 3.

Recapitulating, stadium of growth, thus bone size, was the main
variation across the dataset in most studies. Applying scaling mitigated
this size variation, revealing more subtle differences in shape. The
compactness of the SSMs increased when using unscaled samples; the
first principal component(s) explained the majority of variation.
Unscaled models were favorable when predicting new geometries, as
size information was retained.

3.4. Correlation

In most studies, the first PC was dominated by age-related changes.
In McKinsey et al. (2023), the first shape mode was greatly weighted by
variation in the longitudinal plane, reflecting the change in femur length
(McKinsey et al., 2023). In Mercan et al. (2020) and the first study of
O'Sullivan et al. (2021), it was found that the first PC captured differ-
ences in overall skull size (Mercan et al., 2020; O'Sullivan et al., 2021).
The latter reported a correlation between the first PC and age in the
healthy and diseased populations. Heutinck et al. (2021) identified a
correlation between the first shape mode and age as well, but also with
cranial dimensions using Pearson's r correlation test (Heutinck et al.,
2021). Three studies used Spearman's rank correlation test. They
revealed that their first PCs correlated strongly with age, as shown in
Table 4 (Klop et al., 2021; Klop et al., 2024; O'Sullivan et al., 2022) . Size
difference was no longer a dominant factor in successive PCs, and no
correlation with age was found (O'Sullivan et al., 2022). Klop et al.
(2024) reported significant correlations to age for both the unscaled SSM
and the rescaled model of the mandible (Klop et al., 2024). For the
unscaled model, an increase in size was the most noticeable change of
the first PC, but upon closer inspection, some additional age-related
processes could be identified. In the rescaled SSM, the other age-
related variations, like the gonial angle and chin protrusion, were
more evident because size differences were absent. The same effect was
observed in Carman et al. (2022) (Carman et al., 2022). The first PC of
the standard model showed most of the variation, accounting for overall
size. The first shape mode of the Procrustes PCA included more subtle
growth-related changes in shape, like bone width and rotational factors.

In short, the first shape mode correlated strongly with the temporal
factor age in all studies that investigated it. Also a scaled model, where
size differences were excluded, showed a significant correlation between
morphological features and age.

Table 4
Correlations between shape features and temporal factors.
Study Variable1  Variable 2 Statistical Correlation
test coefficient, p-
value
Heutinck PC1 Cranial width/ Pearson's r r=0.75/0.84/
2021 height/length 0.84, p < 0.001
Age r=20.76,p <
0.001
Klop PC1 Age Spearman's r r=0.87,p < 0.001
2021
Klop PC1 Age Spearman's r r=0.87,p<
2024 original 0.0001
PC1 r=0.82,p<
scaled 0.0001
Mercan PC1 Age healthy Linear R?=0.68
2020 Age diseased regression R?=0.59
O'Sullivan  PC1 Age Spearman's r r=0.94,p <0.01
2022

Bone Reports 24 (2025) 101817
3.5. Model & prediction performance

The PCs can be used to reconstruct any shape in the dataset. The
geometry is approximated as the mean shape plus a weighted sum of the
included PCs, representing how much of the different modes of variation
are present in the shape. In Sahlstedt, 23 of the 122 PCs were used to
reconstruct training object shapes, leading to a mean RMSE, a measure
for the deviation between the original and reconstructed shapes, of <0.5
mm (Sahlstedt, 2018). In the first study of O'Sullivan et al. (2021), a
generalization error of 1 mm was found when including 15 PCs in the
modeling of the skull. The error was <0.5 mm when all PCs were uti-
lized, indicating that the model generalized well to unseen skull samples
(O'Sullivan et al., 2021). Specificity values <0.7 mm demonstrated that
novel skull instances generated by the SSM were also realistic. The
model of O'Sullivan et al. (2022) generalized with an error < 0.5 mm
when 15 PCs were used (O'Sullivan et al., 2022). The specificity error
was 5.1 mm with 160 PCs. This could be attributed to the model size
differences and the small sample size for model construction. The SSM of
Shi et al. (2022) was used to reconstruct bones in a leave-one-out
analysis (Shi et al., 2022). Reconstructing using a complete segmenta-
tion and the first PC as input yielded an RMSE of +1 mm for all bone
types. The authors tried to reconstruct bone geometries using a small set
of landmarks as input as well. This resulted in slightly higher mean er-
rors (<2 mm for the tibia, fibula and patella, 2.38 mm for the femur and
3.60 mm for the pelvis) but captured enough shape variance to recon-
struct novel bone shapes accurately. This study also compared using an
adult-based SSM to a pediatric SSM to reconstruct pediatric bones. The
latter was significantly more accurate, supporting the value of a
spatiotemporal population-specific SSM when modeling developing
anatomy.

In their first study, Li et al. (2015) utilized a multivariate regression
model to associate PC-scores, representing head geometry, with the
predictors age and head circumference (Table 5) (Li et al., 2015). Based
on those predictors, landmark prediction of fifteen unseen patients
showed good accuracy when compared to the actual landmarks from CT
data. Surface reconstruction, performed after fitting the template model,
based on the predicted landmarks was reported acceptable. With a linear
mixed model, age, head circumference and landmark locations were
significant predictors of suture width and skull thickness. Hence, the
authors expect the model to be useful for rapidly generating patient-
specific finite element models using only a few predictors, such as age
and head circumference. These predictors would be used to predict
landmarks and geometric information, which in turn can be employed
for morphing a template skull into a patient-specific model.

Both Carman et al. (2022) and McKinsey et al. (2023) used their SSM
to predict individual lower limb bone geometries of new subjects based
on predictive factors such as age, height and mass (Carman et al., 2022;
McKinsey et al., 2023). With Partial Least Squares Regression (PLSR),
the capacity of patient characteristics to predict PC scores was investi-
gated (Table 5). McKinsey et al. (2023) chose age, height, and weight as
predictors to estimate the first two PC scores. The estimated PC scores
were used to generate predicted femur shapes of a test set, resulting in an
overall RMSE of only 1.97 mm between the predicted and the actual
models segmented from CT. Larger reconstruction errors were found at
the metaphyses, with high morphological variation. Carman et al.
(2022) performed a multiple comparison analysis between the first PC
and predictive factors, including bone measurements and demographic
factors (age, height, mass, and sex) to evaluate their predictive capac-
ities. In the scaled SSM model, where bones were uniformly scaled by
bone length, variations were not significantly explained by any of the
predictive factors. This limited the ability of this model to predict new
geometries. In the standard PCA model, the highest percentage of
variation over all bones was explained by age, height, and bone mea-
surements. The best set of predictive factors was determined using PLSR
between all principal components and different combinations of pre-
dictive factors. The set of best-performing predictors was used in a leave-
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Table 5
SSM-based prediction models.
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Study Goal Predictive model Analysis

Predictive factors R? Error scores

Carman PLSR

2022

Predict new geometry

- Inform clinical decisions

- Comparison for children with
abnormalities

Test set
validation

Multivariate
regression

Li Predict new geometry

2015 - Generate patient-specific
models
- Curves to predict skull injury
risk
Predict new geometry
- Generate femur models for
finite element analysis

PLSR Test set

validation

McKinsey
2023

O'Sullivan
2021

O'Sullivan
2022

10-fold cross-
validation
10-fold cross-
validation

Predict age based on bone shape  Linear regression

Predict age based on bone shape ~ PLSR

Leave-one-out

Bone Pelvis 0.976 (all factors)

0.951 (demographics)

RMSE [mm]
measurements 2.91 £ 0.99 (all
Age, height, mass, factors)

sex 3.23 £1.22
(demographics)
Volume error [%]
9.90 + 8.29 (all
factors)

10.76 +9.18
(demographics)
RMSE [mm]

2.01 + 0.62 (all
factors)

272 +1.24
(demographics)
Volume error [%]
8.62 + 8.09 (all
factors)

8.90 + 9.20
(demographics)
RMSE [mm]

1.85 + 0.54 (all
factors)

2.25 £ 0.96
(demographics)
Volume error [%]
9.95 + 9.86 (all
factors)

11.17 + 12.47
(demographics)
Mean error [mm]
X:0.07 £+ 2.26
Y: 0.13 + 3.05
Z:0.93 + 4.06

Femur 0.997 (height, femoral
length)

0.970 (age, height)

Tibia/
fibula

0.990 (height, tibial
length)
0.966 (height, mass)

Age & head circumference NR

Age, height, weight 0.976 RMSE [mm]

1.97

Volume error [%]
10.1 + 8.3

RMSE [months]
6.1

RMSE [months]

3.3

PCA shape vectors 0.770

PLS shape modes 0.940

Abbreviations: NR, Not Reported; PCA, Principal Component Analysis; PLS, Partial Least Squares; PLSR, Partial Least Squares Regression; RMSE, Root Mean Square

Error.

one-out analysis to predict weights for the PCs and reconstruct the ge-
ometry of the one ‘left-out’ subject. Lower RMSEs were found when bone
length measurements and demographic factors were used for prediction.
However, errors were still acceptable (£0.5 mm higher) when only
demographics were used. The same applied to the volume errors, which
were comparable to volumetric errors reported by McKinsey et al.
(2023). For the femur and tibia/fibula, height and bone length mea-
surements were the most important predictive factors. Age did not
contribute to predicting long bone shapes as much as height and bone
length. If bone measurements were unavailable, height and age were
shown to be predictive values for the femur and height, along with mass
for the tibia/fibula.

The other way around, O'Sullivan et al. (2021,2022) assessed if age
could be predicted using skull and mandibular shape, respectively
(O'Sullivan et al., 2021; O'Sullivan et al., 2022). In their first study, a
linear age regression indicated that age in the range of zero to four years
old can be inferred from skull shape with reasonable accuracy. In the
latter study, age prediction was performed using PLSR analysis. The
result was a significant correlation between predicted and true age.

In several studies, the effect of sex on bone shape was investigated,
either as the predictor or the to-be-predicted variable. Coquerelle et al.
(2011) assessed sexual dimorphism in the mandible from birth until
adulthood, finding differences between males and females until 4 years

old and after puberty (Coquerelle et al., 2011). Peters et al. (2017) found
no sexual dimorphism in size, 3D shape, and orientation in their pedi-
atric spine and vertebrae SSMs (Peters et al., 2017). Klop et al. (2024)
showed a difference between sexes for four PCs and created a separate
growth model for males and females (Klop et al., 2024). In O'Sullivan
et al. (2021), a low correlation between sex and the shape modes was
reported (O'Sullivan et al., 2021). Sex was found to be an important
predictive factor for the pelvis but not for long bones in Carman et al.
(Carman et al., 2022).

PLSR was successfully used in several studies for prediction based on
an SSM. The first step in reconstructing a new subject's anatomy involves
predicting the weightings of PCs. With those scores, the deviation from
the average shape across different modes of variation is known, facili-
tating the reconstruction of the desired geometry. Height and, to a lesser
extent, age, sex and mass are important predictive factors. Bone mea-
surements can improve the prediction's accuracy but are less easy to
obtain in clinical practice.

4. Discussion
Understanding changes in bone anatomy during growth and even

predicting them is feasible with spatiotemporal statistical shape
modeling. An SSM of a developing population is a valuable tool, not only
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for gaining insight into the growth process but also for differentiating
normal from pathological growth, fostering the treatment of patients
with osseous pathology.

Growth is a complex process about which little is known due to the
scarcity of 3D scans of (healthy) children at different ages. Therefore,
developing spatiotemporal SSMs of pediatric bones along the growth
process is valuable.

Population size varied from tens to hundreds of subjects. A larger
dataset with representative subjects helps to ensure all common varia-
tions are captured in detail within the SSM. However, quality of the
samples should be a priority over the quantity. Carman et al. (2022) and
Shi et al. (2022) found comparable reconstruction accuracy values,
although the latter used a smaller dataset (£650 versus 56 subjects,
respectively) to develop the SSM (Carman et al., 2022; Shi et al., 2022).
This suggests additional training data may not always lead to a better-
performing SSM. Especially when modeling pediatric anatomy with
varying size, other factors may have a larger influence on the model's
accuracy, such as the choice to apply scaling or not.

The origin and quality of the data used to develop the SSM should
match the purpose of the model. Cadaveric subjects have the advantage
of higher limits for radiation exposure and no moving artifacts,
enhancing imaging quality. Scans of cadaveric bodies or bones suffice to
explore the shape variation in a population, provided quality is good and
uniform across the dataset and characteristics like age are available. For
predicting individual anatomy, it is recommended to use the same type
of training data as will be used to validate the model. In clinical practice,
this would likely be CT scans of one anatomic region, with radiation
exposure as low as reasonably possible. With the risk of moving artifacts,
manual or semi-automatic segmentation is recommended to ensure high
quality 3D models.

Bone models were, in most cases, parametrized using a PDM with
(semi-)landmarks. A deformation model, as Heutinck et al. (2021)
applied, is also a viable option (Heutinck et al., 2021; Gerig et al., 2016).
However, the implicit representation of shape is less intuitive than
explicit representations like PDMs, according to Adams et al. (2022)
(Adams et al., 2022). PDMs are more easily interpreted and visualized,
which is preferred for clinical application. Alignment using template
fitting resulted in errors of <0.5 mm, which is in the same order of
magnitude as a CT scan's spatial resolution. Assessing the anatomical
accuracy of the template fitting is recommended if the PDM should
represent the exact same anatomical location on every sample, for
example for automatic landmark placement. However, anatomical ac-
curacy does not have to be very high to capture the shape variation in a
population. By assessing the geometric accuracy, one makes sure the
PDM represents the bone surfaces well, which is sufficient to explore the
shape variation reliably population-wise. Creating a PDM without
landmarks is viable to capture all variations in the dataset, but align-
ment can be challenging. Parametrization guided by landmarks im-
proves anatomical accuracy and is therefore recommended if available.
Four studies used manually annotated landmarks during the develop-
ment of the PDM (Li et al., 2015; McKinsey et al., 2023; Mercan et al.,
2020; O'Sullivan et al., 2022). They checked the inter- and intra-
observer variability of the landmarking process, which is advisable to
ensure dense correspondence in the resulting PDM. Automatic land-
marking, used in two studies, is recommended if a validated algorithm is
available to avoid the time-consuming and error-prone annotation
process (Coquerelle et al., 2011; Peters et al., 2017). The included
studies were not consistent regarding the use of scaling during align-
ment. So, whether it is advisable to apply scaling depends on the goal of
the SSM. Scaled models can reveal more subtle age-related shape vari-
ations. However, an unscaled SSM is advised for predicting anatomical
shape, as the retained size information is essential to reconstruct anat-
omy accurately.

The reviewed studies consistently demonstrated that the most com-
mon shape variation, PC1, correlated strongly with age. Carman et al.
(2022) and McKinsey et al. (2023) employed the demographic factors
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age, height, and mass to predict lower limb bone geometries (Carman
et al., 2022; McKinsey et al., 2023). They achieved promising results in
estimating PC scores and generating new bone shapes for unseen pa-
tients. Height was the most important predictor for the lower extremity;
it is unknown if the same applies to other bones. In general, including
more characteristics improves the prediction outcome. None of the
included studies assessed the predictive value of ethnicity. However,
that could be valuable as several studies have shown a relationship be-
tween ethnic origin and bone shape (Durbar, 2014; Zengin et al., 2016;
Seeman, 1998) .

McKinsey et al. (2023) developed a well-performing model to predict
lower limb geometries (Table 2) according to the RMSE and volume
errors (McKinsey et al., 2023). However, mean and maximum nodal
reconstruction errors were higher at the proximal and distal parts of the
bone than along the shaft. Exactly those proximal and distal parts of the
bones are most variable during growth, close to the joints and crucial to
model with high accuracy. This would need improvement before using
the model for clinical applications. In Carman et al. (2022), bone mea-
surements contributed to the prediction accuracy. RMSEs were + 0.5
mm lower than with only demographic predictive factors (Carman et al.,
2022). It remains to be seen whether it is clinically relevant to conduct
those bone measurements, if feasible at all without imaging, for a
slightly smaller margin of error.

It is recommended to not only validate the model's accuracy to
represent the population's bone shapes but also assess its feasibility for
the clinical purpose. Otherwise, statistical shape modeling can appear as
a black box for unfamiliar users, noted Johnson et al. (2023) in their
review (Johnson et al., 2023). Appropriate outcome measures should be
chosen to validate the model and its applications. Compactness, gener-
ality and specificity are common scores to describe an SSM's quality in
general but are not clinically useable. Using a test set or leave-one-out
analysis is advisable to validate prediction models by comparing the
prediction with the original bone model. RMSE was reported in most
included studies, but also the visualization of the error distribution
across the model proved valuable in McKinsey et al. (2023) to get an
understanding of the numbers (McKinsey et al., 2023).

The RMSE was the most reported outcome measure, which made it
possible to compare the accuracy of the models, while the anatomical
structure and validation method often differed. This made it difficult to
compare the SSMs qualitatively. As described, proper validation aimed
at clinical applicability is important to ensure the SSM's accuracy in
representing anatomy at the population level. In addition, scores such as
compactness, specificity, and generalization are preferred to be reported
to assess the quality of the SSM, thus the method, in a general sense. For
prediction, the RMSE is a general outcome measurement that enables a
simple comparison between models. Other outcome measurements,
such as bone length, angulation, and specific anatomical radiologic
measurements, would provide more insight into applicability for a
clinical case but make comparisons between models of different anat-
omy impossible.

In this review, we focused on modeling healthy growth. The clinical
applicability of thoroughly understanding growth includes recognizing
variability within the healthy range. It also allows for creating person-
alized references when the standard is unavailable. Predictions of
healthy growth can aid in early recognition of deviations from the ex-
pected growth trend. When an extremity abnormality is diagnosed and
becomes symptomatic, a corrective osteotomy might be the treatment of
choice. Currently, the patient's contralateral healthy side is often used as
‘reference anatomy’ during pre-operative 3D planning. Scanning the
contralateral side could become unnecessary when using an SSM-based
prediction as a reference, reducing radiation exposure in children.
Osteotomy planning in cases of bilateral abnormalities, where usually no
reference anatomy is available, would also be enabled by an accurate
prediction model for healthy anatomy (van Es et al., 2024). With these
applications in mind, it is important to consider whether the prediction
from the SSM is accurate enough for these goals. Outcome measures like
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RMSE are valuable for evaluating a model's technical accuracy in rep-
resenting anatomical variations within a population. We recommend
these technical metrics to enable model comparability while also
emphasizing the need to explore clinically meaningful measures. Clini-
cians generally benefit from having a single, easy-to-interpret value that
is directly applicable to clinical practice. Additionally, we encourage
systematic data collection, including 3D models and demographic var-
iables such as age, skeletal age, sex, and ethnicity. The completeness and
quality of these data impact the model's ability to accurately capture
group differences and predict 3D anatomical variations, enhancing
clinical relevance.

This overview of state-of-the-art methods can be a foundation for
future research into skeletal growth models using statistical shape
modeling. In this study we chose for a scoping review method and a
search strategy that allows for a broader exploration of the available
literature on state-of-the-art applications of spatiotemporal shape
modeling. It is a relatively new field of research; the number of publi-
cations is still small and heterogeneous. Finally, there was limited di-
versity in anatomical structures. Unfortunately, no studies on statistical
shape modeling of the upper extremity were included. However,
enhancing our understanding of anatomical averages and variations is
also needed for those bones, particularly during growth.

In conclusion, this review aimed to bring together techniques and
applications of spatiotemporal statistical shape modeling of 3D healthy
skeletal structures, providing a starting point for future research. We
demonstrated that spatiotemporal SSMs offer insights into anatomical
variations during growth. It has the potential to predict skeletal geom-
etry based on personal characteristics. If this also applies to patient-
specific characteristics, these models could also become of value for
diagnosing and preoperative planning in orthopedic procedures.
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