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A B S T R A C T

Objective: Analyzing population trends of bone shape variation can provide valuable insights into growth pro
cesses. This review aims to overview state-of-the-art spatiotemporal statistical shape modeling techniques, 
emphasizing their application to 3D skeletal structures during healthy growth.
Methods: We searched PubMed and Scopus for articles on statistical shape modeling using a pediatric spatio
temporal dataset of 3D healthy bone models. Dataset characteristics and details on the shape models' develop
ment, analyses, and potential clinical use were extracted.
Results: Fourteen studies were found eligible, modeling one or multiple lower limb bones, the mandible, the skull, 
and vertebrae. The majority applied Principal Component Analysis on point distribution models to create a 
statistical shape model. Shape variation was analyzed based on shape modes, representing a specific shape 
change as a part of the overall variance. Unscaled models resulted in a more compact statistical shape model than 
scaled models. The latter represented more subtle shape variations due to the absence of size differences between 
the bone models. Four studies reported a significant correlation between the first shape mode and age, indicating 
a relationship between that type of shape variation and growth. Three studies reconstructed 3D models using 
prediction features of statistical shape modeling. Measuring difference between predicted and actual anatomy 
resulted in Root Mean Squared Errors below 3 mm.
Conclusion: Spatiotemporal statistical shape modeling provides insight into modes of shape variation during 
growth. Such a model can be used to find predictive factors, like age or sex, and deploy these characteristics to 
predict someone's bone geometry.

1. Introduction

Growth is the dominant cause of bone change during childhood. 
Clinicians cannot distinguish healthy from pathological deviations 
without insight into regular anatomical changes during growth. In or
thopedics, average growth of long bones is often captured in bone length 
measurements and closure of growth plates. These measurements are 
usually based on 2D imaging, while bones have three-dimensional (3D) 
shapes. Statistical shape models (SSMs), representing the population's 
anatomy in 3D have proven useful in helping understand such normal 
variations in anatomy (Ambellan et al., 2019).

SSMs are a mathematical representation of common shape 

variability within a dataset of structures, like bones (Cootes et al., 1992). 
Given a particular shape (such as a radius in Fig. 1), Principal Compo
nent Analysis (PCA) provides insight into a dataset's different types of 
shape variation, known as shape modes or principal components (PC). 
Each mode corresponds to a particular kind of variation and provides an 
axis along which shapes vary the most from the dataset's mean shape.

Using a cross-sectional dataset of pediatric bones at different ages, 
certain shape variations might be linked to age and, thus growth. These 
models are called spatiotemporal SSMs, as shapes at different time 
points are analyzed. A shape variation related to an increase in age can 
be explained as the average growth. By incorporating more de
mographic characteristics, such as sex or ethnic origin, the mean growth 
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Fig. 1. The first two shape modes for a radius shape model. Each row shows the variation within a principal component between -3σ and + 3σ. In this example, PC1 
captures a difference in overall size. PC2 represents variation in angulation in the coronal plane.
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trajectory for specific groups can be calculated and visualized in 3D.
An SSM can help understand and recognize normal variation over 

time in various populations. However, while this method captures a 
longitudinal, cross-sectional variation, applying this to an individual 
level is also possible. For example, given the 3D model of a bone at the 
age of 10 years, the SSM can predict the shape at 14 years by changing 
the variation described by the change in age and keeping other varia
tions, describing person-specific characteristics, the same. In this way, a 
person-specific prediction of the anatomy can be made by applying an 
average effect. This prediction can help to identify pathological changes 
in practice. Such longitudinal predictions of skeletal anatomy can be 
valuable in tracking bone growth and supporting clinicians in diag
nosing and treating bone abnormalities.

This scoping review provides an overview of the techniques and 
applications for spatiotemporal statistical shape modeling of skeletal 
structures during growth. We report state-of-the-art methods for con
structing an SSM of developing bone and resulting statistical analyses 
focusing on the temporal aspect. The applications of an SSM are dis
cussed along with the reported accuracy scores to investigate clinical 
feasibility.

2. Methods

We searched the PubMed and Scopus databases for studies in English 
until 20 February 2024. Searches were performed using the keywords 
‘statistical shape model’, ‘spatiotemporal’ and ‘bone’ or associated ter
minology (see Table 1). We looked for additional relevant studies by 
snowballing, following references cited in the already identified studies, 
and added them to the synthesis.

The first author performed screening of title and abstract. Studies 
meeting the following criteria were included: 

a. Involves the application of statistical shape modeling,
b. on a dataset comprising 3D skeletal structures,
c. in a pediatric population involving growth.

Articles were systematically searched for study characteristics such 
as anatomical region, dataset size and goal of the SSM. The model type, 
parametrization and alignment methods and shape analyses used to 
create the SSMs were extracted along with the reported variation 
explained by the first PCs. Outcomes regarding the application accuracy 
of the SSMs were collected, including prediction and correlation ana
lyses if performed.

3. Results

3.1. Search results & study characteristics

Fourteen studies were identified for this review and included for data 
extraction (Table 2). Anatomical structures modeled in these studies 
included one or multiple lower limb bones, the mandible, the skull, and 
vertebrae. Most studies used a cross-sectional dataset of CT scans as a 
source for the 3D surface models (Carman et al., 2022; Coquerelle et al., 
2011; Heutinck et al., 2021; Klop et al., 2021; Klop et al., 2024; Li et al., 
2015; Li et al., 2018; McKinsey et al., 2023; Mercan et al., 2020; 

O'Sullivan et al., 2021; O'Sullivan et al., 2022; Peters et al., 2017; 
Sahlstedt, 2018). Only one study used a cross-sectional dataset of MRI 
scans (Shi et al., 2022). Three studies derived their bone models from 
post-mortem body CT scans (Carman et al., 2022; Klop et al., 2024; 
McKinsey et al., 2023). One study utilized scans of cadaveric mandibles 
(Klop et al., 2021), while the other studies sourced data from patient 
scans taken for clinical or research purposes (Coquerelle et al., 2011; 
Heutinck et al., 2021; Li et al., 2015; Li et al., 2018; Mercan et al., 2020; 

Table 1 
Search terms for literature search.

AND AND

Statistical shape model Spatiotemporal Bone
SSM Longitudinal Skeletal
Shape model Development
Shape analysis Growth
Morphology Pediatric

Variation
Change

Table 2 
Characteristics and goal of included statistical shape models.

Study Source Bone Dataset 
type & 
age 
range

Subjects 
(n)

Aim of the study

Carman 
et al., 
2022

CT Pelvis 
Femur 
Tibia/ 
Fibula

CS 
4–18 y

Pelvis: 
331 
Femur: 
663 
Tib/fib: 
658

Understand 
shape 
development 
during growth. 
Predict new 
geometry using 
subject 
characteristics.

Coquerelle 
et al., 
2011

CT Mandible CS 
0–25 y

159 Differentiate 
between groups 
over time.

Heutinck 
et al., 
2021

CT Head CS 
0–2 y

65 Understand 
shape 
development and 
assess surgical 
outcome.

Klop et al., 
2021

CT Mandible CS 
1–12 y

874 Understand 
shape 
development 
during growth.

Klop et al., 
2024

CT Mandible CS 
0–22 y

678 Understand 
shape 
development 
during growth.

Li et al., 
2015

CT Skull CS 
0–3 y

56 Predict new 
geometry using 
subject 
characteristics.

Li et al., 
2018

CT Vertebrae CS 
3–10 y

30 Assess 
correlation 
between shape 
and age.

McKinsey 
et al., 
2023

CT Femur CS 
0–3 y

96 Predict new 
geometry using 
subject 
characteristics.

Mercan 
et al., 
2020

CT Skull CS 
0–6 m

Healthy: 
117 
Diseased: 
81

Understand 
shape 
development 
during growth 
and differences 
between groups.

O'Sullivan 
et al., 
2021

CT Skull CS 
0–4 y

178 Create a 
representative 
bone model.

O'Sullivan 
et al., 
2022

CT Mandible CS 
0–4 y

242 Assess 
correlation 
between shape 
and age.

Peters 
et al., 
2017

CT Spine 
Vertebrae

CS 
1–19 y

91 Assess 
correlation 
between shape/ 
position and age.

Sahlstedt, 
2018

CT Proximal 
femur

CS 
7–17 y

61 Create a 
representative 
bone model.

Shi et al., 
2022

MRI Lower 
limb

CS 
6–19 y

Limb: 56 
Pelvis: 29

Create a 
representative 
bone model.

Abbreviations: CS, cross-sectional; CT, Computed Tomography; FU, follow-up; L, 
longitudinal; m, month; MRI, Magnetic Resonance Imaging; y, year
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O'Sullivan et al., 2021; O'Sullivan et al., 2022; Peters et al., 2017; 
Sahlstedt, 2018; Shi et al., 2022). Age was the variable temporal factor 
in all included articles, varying between 0 and 2 months and 0 to 25 
years. All studies aimed to generate a representative bone model for the 
temporal range covered in their dataset. The authors of six studies tested 
for correlation between shape-related variables and age (Coquerelle 
et al., 2011; Heutinck et al., 2021; Klop et al., 2021; Klop et al., 2024; 
Mercan et al., 2020; O'Sullivan et al., 2022). In seven articles, the pre
dictive capability of the SSM was evaluated (Carman et al., 2022; Li 
et al., 2015; McKinsey et al., 2023; O'Sullivan et al., 2021; O'Sullivan 
et al., 2022; Sahlstedt, 2018; Shi et al., 2022). Two other studies focused 
on the ability to distinguish two groups based on shape data derived 
from the SSM (Coquerelle et al., 2011; Mercan et al., 2020).

3.2. Model type & parametrization

In most studies, a Point Distribution Model (PDM) was used to 
represent the model surfaces as data points in a three-dimensional 

coordinate system (Table 3) (Carman et al., 2022; Coquerelle et al., 
2011; Klop et al., 2021; Klop et al., 2024; Li et al., 2015; Li et al., 2018; 
McKinsey et al., 2023; Mercan et al., 2020; O'Sullivan et al., 2021; 
O'Sullivan et al., 2022; Peters et al., 2017; Sahlstedt, 2018; Shi et al., 
2022). A point cloud is created using anatomical landmarks, non- 
anatomical semi-landmarks, or evenly distributed surface nodes. Semi- 
landmarks are points that are positioned along curves or surfaces be
tween traditional landmarks. Samples were fitted to a template to 
consistently sample data points among all subjects, known as parame
trization (Fig. 2). Usually, the 3D model of the dataset’ mean or a sample 
close to the mean is used as a template, along with its surface repre
sentation by landmarks or evenly distributed surface points. Several 
techniques were applied to fit the PDMs to the template, including 
Radial Basis Functions, Thin-Plate Splines, Iterative Closest Point (ICP), 
and Coherent Point Drift (CPD) algorithms, as shown in Table 3. Four 
studies reported fitting errors to quantify the anatomical and/or geo
metric accuracy of the template fitting. Template-to-target registration 
using ICP and CPD algorithms resulted in average geometrical distances 

Table 3 
Techniques used to develop the Statistical Shape Models and resulting Principal Component scores.

Study Model type Parametrization Alignment Shape 
analysis

Principal Components 
# first principal components | % variation 
explained

Carman 
2022

PDM 
- Surface nodes

Template fitting 
- Radial basis function

Rigid 
- Centre of mass

Standard PCA 
Procrustes PCA 
Scaled PCA

Standard PCA pelvis: 1 PC | 92 % 
Standard PCA femur: 1 PC | 98 % 
Standard PCA tibia/fibula: 1 PC | 97 % 
Procrustes PCA pelvis: 41 PCs | 90 % 
Procrustes PCA femur: 60 PCs | 90 % 
Procrustes PCA tibia/fibula: 39 PCs | 90 % 
Scaled PCA pelvis: 9 PCs | 90 % 
Scaled PCA femur: 36 PCs | 90 % 
Scaled PCA tibia/fibula: 15 PCs | 90 %

Coquerelle 
2011

PDM 
- Anatomical landmarks 
- Semi-landmarks

Template fitting 
- Thin-plate spline

GPA PCA 1 PC | 62 %

Heutinck 
2021

Deformation model Deformation NR PCA 1 PC | 67 %

Klop 
2021

PDM 
- Semi-landmarks

Template fitting 
- ICP & CPD

GPA 
- Unscaled

PCA 1 PC | 78 %

Klop 
2024

PDM 
- Surface nodes

Template fitting 
- Rigid & non-rigid ICP

Procrustes 
- Unscaled 
- Scaled

PCA Unscaled: 1 PC | 92 % 
Unscaled: 3 PCs | 95 % 
Scaled: 24 PCs | 95 %

Li 
2015

PDM 
- Anatomical landmarks 
- Semi-landmarks

Landmark registration Rigid 
- Translation 
- Rotation

PCA NR

Li 
2018

PDM 
- Discrete points from 
curves

Curvature-based approach Rigid 
- Anatomical coordinate 
system

PCA NR

McKinsey 
2023

PDM 
- Surface nodes 
- Anatomical landmarks

Template fitting 
- Radial basis function

Procrustes PCA 1 PC | 99 %

Mercan 
2020

PDM 
- Anatomical landmarks 
- Semi-landmarks

Template fitting 
- Thin plate splines

GPA 
- Unscaled

PCA Healthy: 1 PC | 35 % 
SCS: 1 PC | 30 % 
20 PCs | 90 %

O'Sullivan 
2021

PDM 
- Anatomical landmarks

Template fitting 
- Non-rigid ICP

Procrustes PCA 1 PC | 38 % 
10 PCs | 90 %

O'Sullivan 
2022

PDM 
- Anatomical landmarks 
- Semi-landmarks

Template fitting 
- Non-rigid ICP

Rigid 
- Landmarks 
- Unscaled

PCA 1 PC | 90 % 
22 PCs | 99 %

Peters 
2017

PDM 
- Anatomical landmarks

Template fitting 
- ICP

GPA 
- Scaled

Fitted equations 
- Scale 
maintained

Sahlstedt 
2018

PDM 
- Surface nodes

Template fitting 
- ICP and nonrigid 
registration

GPA 
- Scaled

PCA 1 PC | 33 % 
23 PCs | 95 %

Shi 
2022

PDM 
- Surface nodes

Template fitting 
- Radial basis function

Rigid 
- ICP 
- Scaled

PCA Femur: 11 PCs | 75 % 
Pelvis: 9 PCs | 80 % 
Tibia: 9 PCs | 83 % 
Fibula: 5 PCs | 63 % 
Patella: 4 PCs | 43 %

Abbreviations: CPD, Coherent Point Drift; GPA, Generalized Procrustes Analysis; ICP, Iterative Closest Point; NR, Not Reported; PC, Principal Component; PCA, 
Principal Component Analysis; PDM, Point Distribution Model.
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of 0.05 mm and submillimeter differences between the actual and ex
pected landmark positions (Klop et al., 2021). The MeshMonk algo
rithm, a combination of rigid and non-rigid registration, resulted in a 
similar geometric accuracy of 0.05 mm. Anatomical validation showed a 
mean distance of 1.1 mm between the landmarks assigned by MeshMonk 
and by the observer (Klop et al., 2024). Sahlstedt (2018) reported mean 
distances between the registered volume meshes and the actual meshes 
of <0.2 mm and mean maximum distances in the order of 2 mm 
(Sahlstedt, 2018). Geometric fitting errors were low for all bones in 
Carman et al. (2022) after template fitting using radial basis functions 
(pelvis: 0.35 ± 0.08 mm, femur: 0.20 ± 0.04 mm, tibia/fibula: 0.16 ±
0.04 mm) (Carman et al., 2022).

The two studies by Li et al. (2015, 2018) used different model types 
to parametrize the samples. In the first study, they identified landmarks 
across the surface and aligned them using rigid registration to a pre-set 
origin and orientation (Li et al., 2015). Their later study used a 
curvature-based approach to discretize surfaces into geometric curves 
and then align discrete points (Li et al., 2018). Heutinck et al. (2021) 
applied a deformation model using DEFORMETRICA, a framework to 
determine the population's average shape and its variations (Heutinck 
et al., 2021). The dataset is represented by a template and deformation 

vectors that can be used to warp the template to a subject's shape 
complex (Durrleman et al., 2014).

Summarized, the primary approach for this step in SSM development 
was the construction of a PDM with landmarks or surface nodes. 
Parametrization with template fitting was the most common, resulting 
in negligible registration errors.

3.3. Analysis of shape variation

Peters et al. (2017) analyzed shape variation of the vertebrae in 
relation to age by fitting equations to estimate landmark positions and 
rotation angles (Peters et al., 2017). Of all shape equations, 72 % dis
played a significant age-dependent trend. All other studies used PCA to 
assess shape variation across the population (Table 3).

Before conducting PCA, all samples must be aligned to achieve point 
correspondence as facilitated by the earlier parametrization step. In six 
studies, the differences in size were eliminated by scaling all samples to 
the mean size (volume) during the alignment process with Procrustes 
analysis (Coquerelle et al., 2011; McKinsey et al., 2023; O'Sullivan et al., 
2021; Peters et al., 2017; Sahlstedt, 2018; Shi et al., 2022). This removed 
a large proportion of variation, especially in datasets involving growth, 

Fig. 2. Visualization of the development of an SSM, with the radius as example. Shape correspondence among the dataset is established using template fitting of the 
Point Distribution Models (top). After alignment, PCA is applied to generate the SSM (bottom).
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and revealed more subtle changes in the primary PCs. In six other 
studies, the scaling difference in samples across the temporal range was 
retained by applying rigid registration or Procrustes without scaling 
(Carman et al., 2022; Klop et al., 2021; Li et al., 2015; Li et al., 2018; 
Mercan et al., 2020; O'Sullivan et al., 2022). Incorporating size variation 
into the SSM is needed for accurately predicting new geometries, 
including bone size. In the second study of Klop et al. (2024) and the 
study of Carman et al. (2022) SSMs with and without scaling in the 

alignment or PCA were developed and compared (Carman et al., 2022; 
Klop et al., 2024). The first PC of the unscaled mandible SSM by Klop 
et al. (2024) explained 92 % of all variation, whereas the first PC of the 
scaled model accounted for only 67 % of the variation. For the scaled 
model, more PCs were required to cover 95 % of the variation (24 PCs 
compared to 3 for the unscaled model), making it a less compact model. 
The same trend was seen in Carman et al. (2022). Only one PC was 
needed to explain >90 % of the variation for the unscaled bone models. 

Fig. 3. Visualization of the effect of scaling using synthetic data. Shape variation represented by the first shape at the left, and compactness plots at the right for (A) 
unscaled models and (B) scaled models.
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The SSMs constructed using Procrustes PCA, thus without size differ
ences, used at least 40 PCs to describe 90 % of shape variation but 
revealed more detailed shape changes. These findings were consistent 
with the other studies: unscaled models were generally more compact 
than scaled SSMs (Fig. 3). The applied pipelines to develop an SSM, 
along with reported proportions of variation explained by the first PC(s), 
can be found in Table 3.

Recapitulating, stadium of growth, thus bone size, was the main 
variation across the dataset in most studies. Applying scaling mitigated 
this size variation, revealing more subtle differences in shape. The 
compactness of the SSMs increased when using unscaled samples; the 
first principal component(s) explained the majority of variation. 
Unscaled models were favorable when predicting new geometries, as 
size information was retained.

3.4. Correlation

In most studies, the first PC was dominated by age-related changes. 
In McKinsey et al. (2023), the first shape mode was greatly weighted by 
variation in the longitudinal plane, reflecting the change in femur length 
(McKinsey et al., 2023). In Mercan et al. (2020) and the first study of 
O'Sullivan et al. (2021), it was found that the first PC captured differ
ences in overall skull size (Mercan et al., 2020; O'Sullivan et al., 2021). 
The latter reported a correlation between the first PC and age in the 
healthy and diseased populations. Heutinck et al. (2021) identified a 
correlation between the first shape mode and age as well, but also with 
cranial dimensions using Pearson's r correlation test (Heutinck et al., 
2021). Three studies used Spearman's rank correlation test. They 
revealed that their first PCs correlated strongly with age, as shown in 
Table 4 (Klop et al., 2021; Klop et al., 2024; O'Sullivan et al., 2022) . Size 
difference was no longer a dominant factor in successive PCs, and no 
correlation with age was found (O'Sullivan et al., 2022). Klop et al. 
(2024) reported significant correlations to age for both the unscaled SSM 
and the rescaled model of the mandible (Klop et al., 2024). For the 
unscaled model, an increase in size was the most noticeable change of 
the first PC, but upon closer inspection, some additional age-related 
processes could be identified. In the rescaled SSM, the other age- 
related variations, like the gonial angle and chin protrusion, were 
more evident because size differences were absent. The same effect was 
observed in Carman et al. (2022) (Carman et al., 2022). The first PC of 
the standard model showed most of the variation, accounting for overall 
size. The first shape mode of the Procrustes PCA included more subtle 
growth-related changes in shape, like bone width and rotational factors.

In short, the first shape mode correlated strongly with the temporal 
factor age in all studies that investigated it. Also a scaled model, where 
size differences were excluded, showed a significant correlation between 
morphological features and age.

3.5. Model & prediction performance

The PCs can be used to reconstruct any shape in the dataset. The 
geometry is approximated as the mean shape plus a weighted sum of the 
included PCs, representing how much of the different modes of variation 
are present in the shape. In Sahlstedt, 23 of the 122 PCs were used to 
reconstruct training object shapes, leading to a mean RMSE, a measure 
for the deviation between the original and reconstructed shapes, of <0.5 
mm (Sahlstedt, 2018). In the first study of O'Sullivan et al. (2021), a 
generalization error of 1 mm was found when including 15 PCs in the 
modeling of the skull. The error was <0.5 mm when all PCs were uti
lized, indicating that the model generalized well to unseen skull samples 
(O'Sullivan et al., 2021). Specificity values <0.7 mm demonstrated that 
novel skull instances generated by the SSM were also realistic. The 
model of O'Sullivan et al. (2022) generalized with an error < 0.5 mm 
when 15 PCs were used (O'Sullivan et al., 2022). The specificity error 
was 5.1 mm with 160 PCs. This could be attributed to the model size 
differences and the small sample size for model construction. The SSM of 
Shi et al. (2022) was used to reconstruct bones in a leave-one-out 
analysis (Shi et al., 2022). Reconstructing using a complete segmenta
tion and the first PC as input yielded an RMSE of ±1 mm for all bone 
types. The authors tried to reconstruct bone geometries using a small set 
of landmarks as input as well. This resulted in slightly higher mean er
rors (<2 mm for the tibia, fibula and patella, 2.38 mm for the femur and 
3.60 mm for the pelvis) but captured enough shape variance to recon
struct novel bone shapes accurately. This study also compared using an 
adult-based SSM to a pediatric SSM to reconstruct pediatric bones. The 
latter was significantly more accurate, supporting the value of a 
spatiotemporal population-specific SSM when modeling developing 
anatomy.

In their first study, Li et al. (2015) utilized a multivariate regression 
model to associate PC-scores, representing head geometry, with the 
predictors age and head circumference (Table 5) (Li et al., 2015). Based 
on those predictors, landmark prediction of fifteen unseen patients 
showed good accuracy when compared to the actual landmarks from CT 
data. Surface reconstruction, performed after fitting the template model, 
based on the predicted landmarks was reported acceptable. With a linear 
mixed model, age, head circumference and landmark locations were 
significant predictors of suture width and skull thickness. Hence, the 
authors expect the model to be useful for rapidly generating patient- 
specific finite element models using only a few predictors, such as age 
and head circumference. These predictors would be used to predict 
landmarks and geometric information, which in turn can be employed 
for morphing a template skull into a patient-specific model.

Both Carman et al. (2022) and McKinsey et al. (2023) used their SSM 
to predict individual lower limb bone geometries of new subjects based 
on predictive factors such as age, height and mass (Carman et al., 2022; 
McKinsey et al., 2023). With Partial Least Squares Regression (PLSR), 
the capacity of patient characteristics to predict PC scores was investi
gated (Table 5). McKinsey et al. (2023) chose age, height, and weight as 
predictors to estimate the first two PC scores. The estimated PC scores 
were used to generate predicted femur shapes of a test set, resulting in an 
overall RMSE of only 1.97 mm between the predicted and the actual 
models segmented from CT. Larger reconstruction errors were found at 
the metaphyses, with high morphological variation. Carman et al. 
(2022) performed a multiple comparison analysis between the first PC 
and predictive factors, including bone measurements and demographic 
factors (age, height, mass, and sex) to evaluate their predictive capac
ities. In the scaled SSM model, where bones were uniformly scaled by 
bone length, variations were not significantly explained by any of the 
predictive factors. This limited the ability of this model to predict new 
geometries. In the standard PCA model, the highest percentage of 
variation over all bones was explained by age, height, and bone mea
surements. The best set of predictive factors was determined using PLSR 
between all principal components and different combinations of pre
dictive factors. The set of best-performing predictors was used in a leave- 

Table 4 
Correlations between shape features and temporal factors.

Study Variable 1 Variable 2 Statistical 
test

Correlation 
coefficient, p- 
value

Heutinck 
2021

PC1 Cranial width/ 
height/length 
Age

Pearson's r r = 0.75/0.84/ 
0.84, p < 0.001 
r = 0.76, p <
0.001

Klop 
2021

PC1 Age Spearman's r r = 0.87, p < 0.001

Klop 
2024

PC1 
original 
PC1 
scaled

Age Spearman's r r = 0.87, p <
0.0001 
r = 0.82, p <
0.0001

Mercan 
2020

PC1 Age healthy 
Age diseased

Linear 
regression

R2 = 0.68 
R2 = 0.59

O'Sullivan 
2022

PC1 Age Spearman's r r = 0.94, p < 0.01
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one-out analysis to predict weights for the PCs and reconstruct the ge
ometry of the one ‘left-out’ subject. Lower RMSEs were found when bone 
length measurements and demographic factors were used for prediction. 
However, errors were still acceptable (±0.5 mm higher) when only 
demographics were used. The same applied to the volume errors, which 
were comparable to volumetric errors reported by McKinsey et al. 
(2023). For the femur and tibia/fibula, height and bone length mea
surements were the most important predictive factors. Age did not 
contribute to predicting long bone shapes as much as height and bone 
length. If bone measurements were unavailable, height and age were 
shown to be predictive values for the femur and height, along with mass 
for the tibia/fibula.

The other way around, O'Sullivan et al. (2021,2022) assessed if age 
could be predicted using skull and mandibular shape, respectively 
(O'Sullivan et al., 2021; O'Sullivan et al., 2022). In their first study, a 
linear age regression indicated that age in the range of zero to four years 
old can be inferred from skull shape with reasonable accuracy. In the 
latter study, age prediction was performed using PLSR analysis. The 
result was a significant correlation between predicted and true age.

In several studies, the effect of sex on bone shape was investigated, 
either as the predictor or the to-be-predicted variable. Coquerelle et al. 
(2011) assessed sexual dimorphism in the mandible from birth until 
adulthood, finding differences between males and females until 4 years 

old and after puberty (Coquerelle et al., 2011). Peters et al. (2017) found 
no sexual dimorphism in size, 3D shape, and orientation in their pedi
atric spine and vertebrae SSMs (Peters et al., 2017). Klop et al. (2024) 
showed a difference between sexes for four PCs and created a separate 
growth model for males and females (Klop et al., 2024). In O'Sullivan 
et al. (2021), a low correlation between sex and the shape modes was 
reported (O'Sullivan et al., 2021). Sex was found to be an important 
predictive factor for the pelvis but not for long bones in Carman et al. 
(Carman et al., 2022).

PLSR was successfully used in several studies for prediction based on 
an SSM. The first step in reconstructing a new subject's anatomy involves 
predicting the weightings of PCs. With those scores, the deviation from 
the average shape across different modes of variation is known, facili
tating the reconstruction of the desired geometry. Height and, to a lesser 
extent, age, sex and mass are important predictive factors. Bone mea
surements can improve the prediction's accuracy but are less easy to 
obtain in clinical practice.

4. Discussion

Understanding changes in bone anatomy during growth and even 
predicting them is feasible with spatiotemporal statistical shape 
modeling. An SSM of a developing population is a valuable tool, not only 

Table 5 
SSM-based prediction models.

Study Goal Predictive model Analysis Predictive factors R2 Error scores

Carman 
2022

Predict new geometry 
- Inform clinical decisions 
- Comparison for children with 
abnormalities

PLSR Leave-one-out Bone 
measurements 
Age, height, mass, 
sex

Pelvis 0.976 (all factors) 
0.951 (demographics)

RMSE [mm] 
2.91 ± 0.99 (all 
factors) 
3.23 ± 1.22 
(demographics) 
Volume error [%] 
9.90 ± 8.29 (all 
factors) 
10.76 ± 9.18 
(demographics)

Femur 0.997 (height, femoral 
length) 
0.970 (age, height)

RMSE [mm] 
2.01 ± 0.62 (all 
factors) 
2.72 ± 1.24 
(demographics) 
Volume error [%] 
8.62 ± 8.09 (all 
factors) 
8.90 ± 9.20 
(demographics)

Tibia/ 
fibula

0.990 (height, tibial 
length) 
0.966 (height, mass)

RMSE [mm] 
1.85 ± 0.54 (all 
factors) 
2.25 ± 0.96 
(demographics) 
Volume error [%] 
9.95 ± 9.86 (all 
factors) 
11.17 ± 12.47 
(demographics)

Li 
2015

Predict new geometry 
- Generate patient-specific 
models 
- Curves to predict skull injury 
risk

Multivariate 
regression

Test set 
validation

Age & head circumference NR Mean error [mm] 
X: 0.07 ± 2.26 
Y: 0.13 ± 3.05 
Z: 0.93 ± 4.06

McKinsey 
2023

Predict new geometry 
- Generate femur models for 
finite element analysis

PLSR Test set 
validation

Age, height, weight 0.976 RMSE [mm] 
1.97 
Volume error [%] 
10.1 ± 8.3

O'Sullivan 
2021

Predict age based on bone shape Linear regression 10-fold cross- 
validation

PCA shape vectors 0.770 RMSE [months] 
6.1

O'Sullivan 
2022

Predict age based on bone shape PLSR 10-fold cross- 
validation

PLS shape modes 0.940 RMSE [months] 
3.3

Abbreviations: NR, Not Reported; PCA, Principal Component Analysis; PLS, Partial Least Squares; PLSR, Partial Least Squares Regression; RMSE, Root Mean Square 
Error.
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for gaining insight into the growth process but also for differentiating 
normal from pathological growth, fostering the treatment of patients 
with osseous pathology.

Growth is a complex process about which little is known due to the 
scarcity of 3D scans of (healthy) children at different ages. Therefore, 
developing spatiotemporal SSMs of pediatric bones along the growth 
process is valuable.

Population size varied from tens to hundreds of subjects. A larger 
dataset with representative subjects helps to ensure all common varia
tions are captured in detail within the SSM. However, quality of the 
samples should be a priority over the quantity. Carman et al. (2022) and 
Shi et al. (2022) found comparable reconstruction accuracy values, 
although the latter used a smaller dataset (±650 versus 56 subjects, 
respectively) to develop the SSM (Carman et al., 2022; Shi et al., 2022). 
This suggests additional training data may not always lead to a better- 
performing SSM. Especially when modeling pediatric anatomy with 
varying size, other factors may have a larger influence on the model's 
accuracy, such as the choice to apply scaling or not.

The origin and quality of the data used to develop the SSM should 
match the purpose of the model. Cadaveric subjects have the advantage 
of higher limits for radiation exposure and no moving artifacts, 
enhancing imaging quality. Scans of cadaveric bodies or bones suffice to 
explore the shape variation in a population, provided quality is good and 
uniform across the dataset and characteristics like age are available. For 
predicting individual anatomy, it is recommended to use the same type 
of training data as will be used to validate the model. In clinical practice, 
this would likely be CT scans of one anatomic region, with radiation 
exposure as low as reasonably possible. With the risk of moving artifacts, 
manual or semi-automatic segmentation is recommended to ensure high 
quality 3D models.

Bone models were, in most cases, parametrized using a PDM with 
(semi-)landmarks. A deformation model, as Heutinck et al. (2021) 
applied, is also a viable option (Heutinck et al., 2021; Gerig et al., 2016). 
However, the implicit representation of shape is less intuitive than 
explicit representations like PDMs, according to Adams et al. (2022) 
(Adams et al., 2022). PDMs are more easily interpreted and visualized, 
which is preferred for clinical application. Alignment using template 
fitting resulted in errors of <0.5 mm, which is in the same order of 
magnitude as a CT scan's spatial resolution. Assessing the anatomical 
accuracy of the template fitting is recommended if the PDM should 
represent the exact same anatomical location on every sample, for 
example for automatic landmark placement. However, anatomical ac
curacy does not have to be very high to capture the shape variation in a 
population. By assessing the geometric accuracy, one makes sure the 
PDM represents the bone surfaces well, which is sufficient to explore the 
shape variation reliably population-wise. Creating a PDM without 
landmarks is viable to capture all variations in the dataset, but align
ment can be challenging. Parametrization guided by landmarks im
proves anatomical accuracy and is therefore recommended if available. 
Four studies used manually annotated landmarks during the develop
ment of the PDM (Li et al., 2015; McKinsey et al., 2023; Mercan et al., 
2020; O'Sullivan et al., 2022). They checked the inter- and intra- 
observer variability of the landmarking process, which is advisable to 
ensure dense correspondence in the resulting PDM. Automatic land
marking, used in two studies, is recommended if a validated algorithm is 
available to avoid the time-consuming and error-prone annotation 
process (Coquerelle et al., 2011; Peters et al., 2017). The included 
studies were not consistent regarding the use of scaling during align
ment. So, whether it is advisable to apply scaling depends on the goal of 
the SSM. Scaled models can reveal more subtle age-related shape vari
ations. However, an unscaled SSM is advised for predicting anatomical 
shape, as the retained size information is essential to reconstruct anat
omy accurately.

The reviewed studies consistently demonstrated that the most com
mon shape variation, PC1, correlated strongly with age. Carman et al. 
(2022) and McKinsey et al. (2023) employed the demographic factors 

age, height, and mass to predict lower limb bone geometries (Carman 
et al., 2022; McKinsey et al., 2023). They achieved promising results in 
estimating PC scores and generating new bone shapes for unseen pa
tients. Height was the most important predictor for the lower extremity; 
it is unknown if the same applies to other bones. In general, including 
more characteristics improves the prediction outcome. None of the 
included studies assessed the predictive value of ethnicity. However, 
that could be valuable as several studies have shown a relationship be
tween ethnic origin and bone shape (Durbar, 2014; Zengin et al., 2016; 
Seeman, 1998) .

McKinsey et al. (2023) developed a well-performing model to predict 
lower limb geometries (Table 2) according to the RMSE and volume 
errors (McKinsey et al., 2023). However, mean and maximum nodal 
reconstruction errors were higher at the proximal and distal parts of the 
bone than along the shaft. Exactly those proximal and distal parts of the 
bones are most variable during growth, close to the joints and crucial to 
model with high accuracy. This would need improvement before using 
the model for clinical applications. In Carman et al. (2022), bone mea
surements contributed to the prediction accuracy. RMSEs were ± 0.5 
mm lower than with only demographic predictive factors (Carman et al., 
2022). It remains to be seen whether it is clinically relevant to conduct 
those bone measurements, if feasible at all without imaging, for a 
slightly smaller margin of error.

It is recommended to not only validate the model's accuracy to 
represent the population's bone shapes but also assess its feasibility for 
the clinical purpose. Otherwise, statistical shape modeling can appear as 
a black box for unfamiliar users, noted Johnson et al. (2023) in their 
review (Johnson et al., 2023). Appropriate outcome measures should be 
chosen to validate the model and its applications. Compactness, gener
ality and specificity are common scores to describe an SSM's quality in 
general but are not clinically useable. Using a test set or leave-one-out 
analysis is advisable to validate prediction models by comparing the 
prediction with the original bone model. RMSE was reported in most 
included studies, but also the visualization of the error distribution 
across the model proved valuable in McKinsey et al. (2023) to get an 
understanding of the numbers (McKinsey et al., 2023).

The RMSE was the most reported outcome measure, which made it 
possible to compare the accuracy of the models, while the anatomical 
structure and validation method often differed. This made it difficult to 
compare the SSMs qualitatively. As described, proper validation aimed 
at clinical applicability is important to ensure the SSM's accuracy in 
representing anatomy at the population level. In addition, scores such as 
compactness, specificity, and generalization are preferred to be reported 
to assess the quality of the SSM, thus the method, in a general sense. For 
prediction, the RMSE is a general outcome measurement that enables a 
simple comparison between models. Other outcome measurements, 
such as bone length, angulation, and specific anatomical radiologic 
measurements, would provide more insight into applicability for a 
clinical case but make comparisons between models of different anat
omy impossible.

In this review, we focused on modeling healthy growth. The clinical 
applicability of thoroughly understanding growth includes recognizing 
variability within the healthy range. It also allows for creating person
alized references when the standard is unavailable. Predictions of 
healthy growth can aid in early recognition of deviations from the ex
pected growth trend. When an extremity abnormality is diagnosed and 
becomes symptomatic, a corrective osteotomy might be the treatment of 
choice. Currently, the patient's contralateral healthy side is often used as 
‘reference anatomy’ during pre-operative 3D planning. Scanning the 
contralateral side could become unnecessary when using an SSM-based 
prediction as a reference, reducing radiation exposure in children. 
Osteotomy planning in cases of bilateral abnormalities, where usually no 
reference anatomy is available, would also be enabled by an accurate 
prediction model for healthy anatomy (van Es et al., 2024). With these 
applications in mind, it is important to consider whether the prediction 
from the SSM is accurate enough for these goals. Outcome measures like 
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RMSE are valuable for evaluating a model's technical accuracy in rep
resenting anatomical variations within a population. We recommend 
these technical metrics to enable model comparability while also 
emphasizing the need to explore clinically meaningful measures. Clini
cians generally benefit from having a single, easy-to-interpret value that 
is directly applicable to clinical practice. Additionally, we encourage 
systematic data collection, including 3D models and demographic var
iables such as age, skeletal age, sex, and ethnicity. The completeness and 
quality of these data impact the model's ability to accurately capture 
group differences and predict 3D anatomical variations, enhancing 
clinical relevance.

This overview of state-of-the-art methods can be a foundation for 
future research into skeletal growth models using statistical shape 
modeling. In this study we chose for a scoping review method and a 
search strategy that allows for a broader exploration of the available 
literature on state-of-the-art applications of spatiotemporal shape 
modeling. It is a relatively new field of research; the number of publi
cations is still small and heterogeneous. Finally, there was limited di
versity in anatomical structures. Unfortunately, no studies on statistical 
shape modeling of the upper extremity were included. However, 
enhancing our understanding of anatomical averages and variations is 
also needed for those bones, particularly during growth.

In conclusion, this review aimed to bring together techniques and 
applications of spatiotemporal statistical shape modeling of 3D healthy 
skeletal structures, providing a starting point for future research. We 
demonstrated that spatiotemporal SSMs offer insights into anatomical 
variations during growth. It has the potential to predict skeletal geom
etry based on personal characteristics. If this also applies to patient- 
specific characteristics, these models could also become of value for 
diagnosing and preoperative planning in orthopedic procedures.
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